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Scientific Summary 

Today, biodiversity is declining faster than ever known in human history. This huge 

loss of species causes a decrease in ecosystem functioning which is a direct threat to 

human existence. To be able to take conservation and restoration actions, inventory 

and monitoring biodiversity and the associated ecosystem functioning is crucial. 

Unmanned aircraft systems (UAS) are in this regard a cost-efficient method to collect 

high spatial resolution data compared to for example field surveys. However, the 

relation between UAS-based data and biodiversity is still underexamined. 

In this master thesis, we tried to predict species diversity and productivity at the 

FORBIO tree experiment sites in Belgium, by collecting and linking multispectral drone 

imagery with ground truth data on species richness and composition. The mean, 

standard deviation and correlation of variance of the six different reflectance bands 

(red, green, blue, red edge, near-infrared and thermal), the normalised difference 

vegetation index and the subtracted plant height were used for modelling. The model 

coefficient of determination (R²) values to predict species richness with spectral data, 

spectral heterogeneity data, plant height data and all data combined were respectively 

0.16, 0.13, 0.26 and 0.33. These results showed that UAS-based tree height data are 

a better predictor of species richness compared to spectral data.  

The models to predict plant height, used as a proxy for tree productivity, had R²-values 

of 0.72 and 0.69 based on spectral data and species richness data, respectively. In 

80% of the mixed plots, a positive net diversity effect was observed. The latter in 

combination with the model results confirms the biodiversity-productivity hypothesis. 

These thesis results indicate that UAS-based data can indeed be used in tree 

biodiversity and productivity studies in addition to field surveys.  
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1 Literature Study 

1.1 Biodiversity in Natural Ecosystems 

1.1.1 Importance 

Biodiversity, including all biotic variation at gene, species, and ecosystem level, is 

essential, not only for human existence but for all life on Earth (Cardinale et al., 2012). 

Its importance as being part of the biophysical ecosystem structure has gotten more 

recognition during the past decades (Haines-Young & Potschin, 2010). Ecosystems 

provide all kinds of socio-economic and ecological benefits to humans, called 

ecosystem services (ES). There are four categories distinguished by the Millennium 

Ecosystem Assessment: provisioning, regulating, cultural, and supporting ecosystem 

services, with the first three directly affecting human well-being and the latter 

maintaining the other three (Millennium Ecosystem Assessment, 2005). The biological 

underpinning that determines the supply of these ES are ecosystem functions (EF) 

(Oliver et al., 2015). 

Understanding how biodiversity affects ecosystem functioning, and therefore human 

well-being, has grown significantly over the past decades (Cardinale et al., 2012). In 

many studies, biodiversity is considered to be a positive determinant of ecosystem 

functions and dynamics (Schwartz et al., 2000; Tilman et al., 2014). Increased species 

richness can result for example in higher productivity, better nutrient dynamics, or 

increased ecosystem stability (Singh, 2002; Tilman, 2001). 

The term ‘overyielding’ is often used to refer to the higher productivity in a species-rich 

ecosystem. There are two main mechanisms that can explain this biodiversity-

productivity hypothesis relation. On the one hand, there is the selection effect. In a 

polyculture, the chance of well-performing species being present is higher as well as 

the chance that they will become dominant and thus increase productivity (Jing et al., 

2021). On the other hand, productivity can increase in polycultures due to 

complementarity between different species. This can have different causes. For 

example, resources can be used more efficiently when species differentiate from one 

another in niche e.g. differentiation in rooting depth and/or architecture (Van de Peer 

et al., 2018). Facilitation and mutualism between different species is another example 

that positively influences the species productivity (Jing et al., 2021). Contrary to 
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selection, complementarity can also explain cases of transgressive overyielding, i.e. 

mixtures that have a higher productivity than the most productive monoculture (Tilman 

et al., 2014). When considering wood production in forest systems, complementarity is 

a more important mechanism than selection (Jing et al., 2021).  

An important part of biodiversity is functional diversity. It is the variety of functional 

traits (e.g. rooting depth, leaf phenology, flowering time) that influence aspects of 

ecosystem functioning like ecosystem dynamics, stability and productivity (Tilman, 

2001). High functional diversity in a species pool can have an even higher importance 

for ecosystem functioning, due to complementarity between different species, mainly 

when considering multiple EF (Haines-Young & Potschin, 2010).  

The impact of biodiversity on EF is nonlinear and saturates at high diversity (Figure 

1-1). This means that, in general, loss of biodiversity in a species-rich ecosystem will 

not have the same impact as in a species-poor ecosystem. The lower the biodiversity 

already is, the higher the decrease in EF and ES delivery when losing extra species 

(Cardinale et al., 2012). Also, the capacity of an ecosystem to buffer environmental 

perturbations will decrease rapidly. The so-called ‘insurance effect’ of biodiversity will 

no longer ensure the stability of ecosystem functioning at a low number of species 

(Oliver et al., 2015). 

 

Figure 1-1 The nonlinear relationship between ecosystem functioning and biological biodiversity, based on several 
hundred experiments. The red line indicates the average change and the grey polygon the 95% confidence interval. 
The upper and bottom red dots show respectively the maximum and minimum value of the most and the least 
productive species grown in a monoculture (copied from Cardinale et al., 2012). 
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1.1.2 Biodiversity Crisis 

In the past, in total five major mass extinctions have occurred and scientists suggest 

that today we are living in an ongoing sixth mass extinction with human activity as its 

main driver (Ceballos et al., 2010; Rampino & Shen, 2021; Roberts et al., 2021). 

Contrary to what many people think, extinction is an essential phenomenon for 

evolution since the balance between speciation and extinction determines 

diversification (Rull, 2022). The natural background extinction rate depends on natural 

selection processes such as competition, climatic changes and predation. When the 

extinction rate exceeds this background rate in orders of magnitude, one speaks of an 

episodic extinction (Rull, 2022). However, an episodic extinction burst is only 

considered as a mass extinction when also more than 75% of the living species are 

lost in a geologically short period of time (Barnosky et al., 2011). 

Based on fossil records, the mean natural background extinction rate for all taxa is 

estimated at 0.1 extinctions per million species-year (E/MSY). In other words, globally 

one extinction per 100,000 species occurs on average every 100 years. Today, this 

rate is between 1,000 and 10,000 times higher (Ceballos et al., 2010; Singh, 2002; 

Figure 1-2). Unlike the rate, the magnitude of extinction has not yet reached the 75% 

boundary to speak of mass extinction. According to the Red List of Threatened Species 

drawn up by the International Union for Conservation of Nature and Natural Resources 

(IUCN), around 900 of the evaluated species went extinct in the past 500 years. This 

is only 0.04% of the 2.0 million known species and 0.01% of the 8.7 million estimated 

species (Bánki et al., 2022; Mora et al., 2011). However, these percentages are 

underestimations since only 142,577 species have already been assessed by the 

IUCN. The evaluated species are unevenly divided across different species groups, 

which makes it impossible to draw conclusions or make extrapolations for the 

insufficiently covered groups (IUCN, 2022).  

The IUCN divides the assessed species into nine different categories depending on 

their risk of global extinction. Compared to the number of extinct species, the number 

of threatened species, which include all vulnerable, endangered and critically 

endangered species, are already much higher and increasing faster than ever seen in 

human history (Figure 1-3). Twenty-eight percent of all evaluated species are 

threatened and according to the seventh global assessment report on biodiversity and 
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ecosystem services, around 1/9th of all plant and animal species on Earth are 

threatened (IPBES, 2019; IUCN, 2022). 

 

Figure 1-2 Cumulative extinction rate (‘extinct’ or ‘extinct in the wild’) of vertebrate species since 1500. The grey 
shape represents the extinction percentages expected with a background extinction rate of 0.1-2 E/MYS. In total 
77% of described vertebrate species have been evaluated (copied from IPBES, 2019).  

When extrapolating the current extinction rate and taking into account the large number 

of threatened species, the benchmark of 75% will be reached in a geologically short 

time interval of less than 1.8 million years (Rull, 2022). So, when no actions are 

undertaken to conserve biodiversity, we can state that today we are facing the start of 

a sixth mass extinction even though the extinction magnitude is not very large yet. 

 

Figure 1-3 Magnitudes of IUCN-assessed extinct (white) and threatened species (black) for different taxa over the 
past 500 years (copied from Barnosky et al., 2011). 
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Both direct and indirect anthropogenic drivers are causing this huge global loss in 

biodiversity. Examples of direct drivers are changes in land and sea use, direct 

exploitation of organisms, climate change, pollution, and invasion of alien species. 

Indirect drivers are the underlying causes of these direct drivers, for example, human 

population dynamics, conflicts, epidemics, trade, etc. Without taking action to reduce 

the impact of these direct and indirect drivers, the global rate of species extinction will 

accelerate even more (IPBES, 2019). 

Although there is a clear global decreasing trend in biodiversity, different patterns are 

observed locally and regionally (Vellend et al., 2017; Figure 1-4). Immigration and 

invasion become important additional inputs next to speciation when evaluating 

regional or local species pools (Singh, 2002). At the regional scale, biodiversity has 

increased over time due to the higher levels of established introduced species 

compared to the number of regionally extinct species (Sax & Gaines, 2003). Most of 

the introductions of non-native species are human-mediated, either accidentally or 

intentionally (Vellend et al., 2017). The species composition becomes more similar in 

different regions because these non-native species spread around the world. Part of 

these introduced species are invasive, for example because their natural enemies are 

not present. Therefore, native specialist species experience higher extinction rates 

(Millennium Ecosystem Assessment, 2005). This global biotic homogenisation is the 

reason why the increased regional biodiversity does not induce global biodiversity gain 

(Cardinale et al., 2012). 

Locally, the temporal biodiversity trends strongly differ depending on the context. For 

example, overexploitation in an intensive agricultural system or excessive nitrogen 

deposition generally cause a local loss of biodiversity. Other drivers such as climate 

change, habitat fragmentation, and pollution can decrease, increase or have no effect 

on the number, composition, and distribution of species (Vellend et al., 2017). Local 

extinctions are also dependent on the coextinction of different species (Koh et al., 

2004). When a certain species disappears, it can influence other species that locally 

depend on each other. Local biodiversity loss can have a direct impact on the local 

provision of certain ES, like flood and drought control, pollination, pest control etc. and 

therefore on the well-being of local communities (Díaz-Delgado et al., 2019; Haines-

Young & Potschin, 2010). 



 

6 
 

 

Figure 1-4 Temporal plant biodiversity change at different spatial scales. The large, shaded polygon represents the 
range of possible outcomes, with the central tendency indicated by the thick, darker curve. The coloured bars 
represent the range of local-scale outcomes of different drivers of change (copied from Vellend et al., 2017). 

Not only species but also genetic diversity is declining due to human activity. According 

to the Food and Agriculture Organisation (FAO), already 75% of all genetic crop 

diversity is lost during the past century (FAO, 1999). Local varieties are lost because 

of the global use of genetically adapted and uniform, high-yielding crops. This loss 

poses a serious threat to global food security since the resilience against pests, 

diseases and climate change declines drastically (IPBES, 2019). The ability to breed 

crops in the future with desired traits such as drought tolerance decreases as well since 

the gene pool becomes smaller when numerous crop varieties disappear. The loss of 

genetic diversity today, which reduces the potential for subsequent evolutionary 

change, is even more alarming than the loss of species diversity (Singh, 2002). 

1.1.3 Ecosystem Monitoring 

Because of this ongoing loss of global biodiversity, the functioning and thereby the 

services delivered by natural ecosystems are highly threatened (Oliver et al., 2015). 

Therefore, conservation and restoration of biodiversity should be one of the major 

global priorities (Tilman et al., 2014). To do so, quick, efficient, and accurate inventory 

and monitoring of biodiversity and the associated ecosystem functioning in natural 

ecosystems is crucial.  

First, it is important to point out that different measures can be used to evaluate and 

monitor biodiversity. Species diversity, being the most used measure of biodiversity, is 

often used as a synonym for species richness (Cardinale et al., 2012). However, it 
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actually should refer to both the number of species and the equitability between them 

(Whittaker et al., 2001). In other words, species diversity covers species richness on 

the one hand and species evenness on the other hand.  

Functional diversity is an interesting facet of biodiversity to measure as well because 

of its strong relation with ecosystem functioning as discussed in section 1.1.1. Different 

measuring tools are used depending on the functional traits of interest, which as 

mentioned before influence the species’ performance. Often knowing which species 

are present in a species pool is enough to evaluate the functional diversity because 

when species are described, most of their functional traits are listed as well. Lastly, 

genetic diversity is also often used as a measure of biodiversity because of its 

importance to maintain the stability of ecosystems. Molecular techniques are needed 

to sample the genetic variation among individuals of the same species (Singh, 2002). 

To monitor species productivity, the above- and belowground biomass should be 

measured. This can be done directly by taking field samples and analyse the biomass 

in a laboratory. However, often less destructive methods are applied, mainly in forest 

systems, to measure the productivity. Diameter growth and tree height measures are 

used to monitor the standing biomass. Since the leaf area index (LAI)1 is positively 

related to tree productivity, it is also often used as a measure (Arias et al., 2007).  

To conduct a biodiversity assessment and inventory at a local or regional scale, often 

point sampling methods based on field visits are used (Singh, 2002). For productivity 

inventory, biomass estimates are often made in the field as well. Albeit being very 

accurate, field sampling has multiple limitations in this regard because these 

measurements are very costly and time-consuming. It is also not always easy to 

extrapolate these point measurements to a larger scale. Therefore, remote sensing 

can be an important alternative. Although it is often less accurate because it does not 

directly measure the variables of interest (see further), it is faster, non-destructive, 

relatively cheap and often easier to repeat and extrapolate (Jones & Vaughan, 2010). 

  

 

1 Leaf Area Index (LAI) is a unitless index defined as the one-side projected leaf area per unit ground 
surface (Arias et al., 2007). 
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1.2 Remote Sensing with Drones 

1.2.1 General Sensor and Platform Characteristics 

Remote sensing (RS) is defined as collecting information about a target from a distance 

without touching it (Khorram et al., 2012). More specifically, when talking about RS for 

earth observation, one often refers to the detection of electromagnetic radiation (EMR) 

by artificial detectors to study natural and non-natural ecosystems and their functioning 

(Jones & Vaughan, 2010). A wide variety of imaging sensors with different 

characteristics and applications is available. Each sensor has a specific spectral, 

spatial and temporal resolution and is active or passive sensing (Toth & Jóźków, 2016). 

The spectral region of a sensor is determining for which applications the collected data 

can be used. The electromagnetic spectrum can be divided into three major groups 

that are used for RS: the optical part of the spectrum, which consists of visible and 

near-infrared radiation (NIR), the infrared part, and the microwave part of the spectrum 

(Figure 1-5). The infrared region is further subdivided in two subregions: the shortwave 

infrared (SWIR) and the longwave infrared (LWIR), also referred to as the thermal 

infrared (TIR). The longer the wavelength, the less energy the wave contains and thus 

the harder it becomes to get information about radiation further in the spectrum 

(Khorram et al., 2012). 

 

Figure 1-5 Electromagnetic spectrum with the optical (visible: 400-700 nm & near infrared part: 700-1000 nm), the 
infrared (shortwave infrared: 1-4 µm & thermal infrared: 4-6 µm & 8-14 µm) and the microwave (0.01-1 m) part of 
the spectrum often used for remote sensing applications (copied from Zhu et al., 2018). 

The number and width of the measured electromagnetic bands determine the spectral 

resolution of a sensor. When hundreds of often single-nm spectral bands are 

measured, one speaks about hyperspectral imagery (Govender et al., 2007). 
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Multispectral imagery has a lower spectral resolution and thus fewer but wider bands 

are captured by the sensor (Toth & Jóźków, 2016). More information is averaged 

together and therefore less detailed information can be obtained per pixel with a 

multispectral sensor. However, for a lot of applications multispectral imagery is already 

detailed enough, definitely when the data can be collected at a high spatial resolution 

such as with UAVs (Dash et al., 2018). 

The spatial resolution is often expressed in ground sampling distance (GSD) and can 

vary between a kilometre and centimetre resolution depending on the sensor, the 

platform and its intended flight altitude (Toth & Jóźków, 2016). The temporal resolution 

or repeat time is defined as how fast the same area can be revisited and resampled by 

the sensor. Lastly, the difference between active and passive sensors depends on the 

type of energy source used (Shaw & Burke, 2003). A passive sensor uses solar 

radiation as light source and captures the reflectance or emittance of objects, 

vegetation, or the atmosphere. Active sensors make use of their own energy source: 

the sensor sends out a signal and measures the difference in time, polarization and/or 

intensity of the returned signal (Zhu et al., 2018). Therefore, active sensors may be 

less dependent on environmental circumstances such as illumination conditions (Toth 

& Jóźków, 2016). An example of an active sensor is a light detection and ranging 

(LiDAR) sensor, where a laser pulse is used to measure the distance to the surface, 

from which a digital elevation model can be constructed. 

This wide variety of sensors can be attached to different types of platforms: spaceborne 

platforms (satellites) or airborne platforms (e.g. aircraft, drones, hot air balloons). 

Satellites often have a high temporal resolution, but a relatively low spatial resolution. 

Aircraft, on the contrary, have a high spatial resolution but the flights are very costly 

and therefore difficult to repeat. Unmanned aircraft systems (UAS) – also called 

drones, unmanned aerial vehicles or remotely piloted aircraft systems – can collect 

spatially very detailed data and these flights are easy and relatively cheap to repeat. 

Therefore, UAS, such as drones, are very useful for numerous applications, for 

example, to assess the biodiversity of ecosystems.  

1.2.2 Drones: The Way to Go? 

UAS technology has developed rapidly over the last decade with new imaging sensors 

and better data processing methods (Toth & Jóźków, 2016). This increasing interest in 
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drone applications is reflected by the increasing trend of drone-related research 

(Chabot, 2018; Tsiamis et al., 2019). The use of drones shows some clear advantages 

compared to other RS techniques and field surveys. First of all, the use of UAS is highly 

flexible and easy to repeat, because the flying path is not fixed as with satellites and 

UAS are easy to transport (Dash et al., 2018; Pajares, 2015). UAS can operate both 

rapidly and at a relatively low cost (Candiago et al., 2015). In contrast, aircraft 

operations are in a lot of cases expensive because an entire flying crew needs to be 

stand-by, often for several days, to be able to take off when the weather conditions are 

favourable (Jones & Vaughan, 2010). A European license to fly with a UAS in open 

class A1 and A3 – as specified by the European Union Aviation Safety Agency (EASA) 

– can be obtained by everyone after taking a free online theoretical exam and is valid 

in all countries in Europe. A licence in these subclasses of the open category is in most 

cases sufficient to conduct biodiversity assessment flights since you generally do not 

need to fly over or near uninvolved people (EASA, 2021). The data captured by UAS 

generally has an extremely high spatial (centimetres) resolution because of their low 

overflight height (Pajares, 2015). Furthermore, drones can give access to inhospitable 

places where field operations would be too dangerous or destructive, e.g. mountainous 

areas, large wildfires, flooded areas etc. (Jones & Vaughan, 2010). Satellites can also 

measure such data, but the overpass time of satellites is fixed, and natural disasters 

are not, neither in place nor in time. 

However, like every technique, UAS also has some disadvantages. Compared to 

satellites and aircrafts the spatial coverage of a drone flight is small due to the low 

flying altitude and the limited battery power. Because of that spatially specific context, 

it will not always be possible to extrapolate developed analysing techniques or 

conclusions to other areas of interest. UAS are, like aircraft, less stable platforms than 

satellites. They are more sensitive to wind and other disturbances, which can result in 

a less accurate positioning (Jones & Vaughan, 2010). UAS do not have a fixed 

overpass time like satellites, which could be a drawback for long-term monitoring 

applications. However, some studies show that combining spatially-detailed UAS data 

with satellite imagery can deliver results with higher utility than both separate datasets 

(Dash et al., 2018). Depending on the type of sensor attached to the UAS, the flight 

possibilities will be limited to certain weather conditions. A drone flies below the clouds, 

but a passive sensor onboard still uses the sun as an energy source and therefore it is 
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better to execute a flight during constant light intensity to have a representative 

reflectance for the whole research area. Nevertheless, depending on the intended 

application useful imagery can be captured even in presence of full cloud cover (Dash 

et al., 2018). Drones can have an extra sensor on top to capture the incoming solar 

radiation so that the reflected radiation can be corrected for it. Another limiting factor 

in the use of UAS is the different flight area restrictions present in almost every country. 

Although the UAS open class A1 and A3 licence allows pilots to fly in all European 

countries, they still need to follow the specific flight area restrictions in their region of 

interest. In certain areas, interference with other aerial vehicles and both security and 

privacy issues make that strict rules need to be followed when using UAS. 

1.2.3 Biodiversity Assessment with Drones 

Spectral Signature of Vegetation 

When sensors measure radiation in multiple bands over a sufficiently wide range of 

the electromagnetic spectrum, the result, a spectral signature, can be used to identify 

materials and/or characteristics of the measured object or surface (Shaw & Burke, 

2003). Vegetation can be distinguished from water, soil, or man-made materials 

through its specific spectral signature, but also different vegetation types or species 

can be differentiated (Figure 1-6). However, the latter can only be done with a high 

spatial and spectral resolution being available. In that case, different parts of the 

spectral signature of vegetation can even provide information about health, possible 

water stress, leaf maturity, etc. (Jones & Vaughan, 2010).  

 

Figure 1-6 Spectral reflectance signatures of different land cover types: healthy vegetation, dry soil, grass litter, 
water, and snow (copied from Huete, 2004). 
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To be able to extract plant biophysical parameters and physiological characteristics of 

vegetation from reflectance data, the interaction between vegetation and incoming 

radiation needs to be well understood (Pajares, 2015). The typical spectral reflectance 

of a single healthy leaf is low in both the visible and SWIR part of the spectrum and 

high in the NIR part of the spectrum (Figure 1-7). 

In the visible part of the spectrum, around 80 to 90% of the photosynthetic active 

radiation is absorbed by different leaf pigments (Jones & Vaughan, 2010). Chlorophyll 

is the dominant photosynthetic pigment in green plants and strongly absorbs red and 

blue wavelengths. Therefore, a small reflectance peak can be seen around the green 

waveband for healthy vegetation, which we perceive as green because of the same 

reason (Govender et al., 2007). The chlorophyll concentration decreases when leaves 

are exposed to environmental stress or are senescing during autumn. In that case, 

carotene and xanthophyll, absorbing blue wavelengths, and anthocyanin, absorbing 

blue and green wavelengths, become more dominant, hence the reflection in the red 

waveband increases (Jones & Vaughan, 2010). To conclude, reflectance data of the 

visible part of the spectrum allows to distinguish vegetation depending on their colour 

and maturity. 

The dominant factor controlling the leaf reflectance in the NIR part of the spectrum is 

the cell structure. Typically, between 40 and 50% of the incoming radiation is reflected, 

but it can vary depending on the cellular arrangements within the leaf that determine 

internal scattering (Govender et al., 2007). Dicots generally have a dorsiventral leaf 

structure with a lot of air and asymmetric structures which causes scattering inside the 

leaf while monocots have a more compact leaf structure that allows less scattering and 

thus more absorption and less reflectance (Jones & Vaughan, 2010). Also, sun leaves 

and older leaves generally have a less compact structure and can therefore be 

distinguished from shadow leaves and younger leaves based on NIR reflectance data. 

The sharp increase between the red waveband and the NIR plateau is called the red 

edge and can be used as a proxy for plant stress (Huete, 2004).  

Three water absorption bands can be found in the SWIR around 1450 nm, 1950 nm 

and 2500 nm (Jones & Vaughan, 2010). When a leaf is under water stress less 

radiation will be absorbed in these bands and thus more light is reflected. The lignin 

and cellulose content are two other main factors influencing the reflectance in the 

SWIR region. In the TIR part of the spectrum, vegetation reflectance is too low to 
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measure with remote sensing applications (Zhu et al., 2018). However, the emissivity 

in these wavelengths is high when vegetation wants to get rid of excess energy. It is 

related to the leaf temperature and transpiration and can therefore be linked to changes 

in plant metabolism (Jones & Vaughan, 2010).  

  

Figure 1-7 Typical spectral reflectance signature of healthy green vegetation (copied from Kirkaya, 2020). 

This typical spectral reflectance signature is solely determined by the radiative 

characteristics of individual leaf components. It is the result of single-leaf 

measurements with a spectroradiometer that uses a perpendicular incoming light 

beam. However, the reflectance data collected with a UAS is the result of the 

interaction between incoming radiation and the entire vegetation canopy rather than 

single leaves (Pajares, 2015). Overall, the reflectance is lower than of a single leaf 

measurement because of variations in leaf orientation, illumination angle, and shadow. 

A part of the reflected signal is also attenuated due to interaction with the soil or other 

non-foliage background surfaces (Jones & Vaughan, 2010). The latter is less 

pronounced when using UAS compared to for example satellites because there are no 

mixed pixels in cm-resolution images. On the other hand, volume scattering, being the 

scattering caused by transmission and reflection across the multiple leaf layers in the 

canopy, can compensate for that reduction in reflectance. In canopies with a high LAI, 

more volume scattering will take place resulting in higher reflectance, mainly in NIR, 

compared to canopies with a low LAI. 
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Translation to Biodiversity Measures 

With passive sensors on board a UAS, a stack of images is created for every pixel with 

every image representing another waveband (Shaw & Burke, 2003). That results in a 

3D data cube, with two spatial dimensions (x and y) and one spectral dimension (z), 

which contains the different spectral channels. There are different approaches to 

translate this spectral data cube in information for assessing biodiversity. 

A simple, widely-used method to distinguish vegetation is calculating spectral indices 

from certain bands of the spectral signature. One of the most known ratios is the 

normalized difference vegetation index (NDVI). A band in the near-infrared part of the 

spectrum is compared with a band in the red part of the spectrum by taking the 

normalized difference as the name suggests (Zhu et al., 2018):  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
    (1.1) 

As discussed in the previous section, plants subjected to stress show a higher 

reflectance in the red waveband and a lower reflectance in the NIR part of the 

spectrum, resulting in a smaller normalised difference. Studies show that this ratio is 

indeed correlated with the amount of physiological stress, but also with the amount of 

vegetation cover, the plant condition, and the photosynthetic activity (Dash et al., 

2018). Therefore, variation in NDVI can be used as a proxy for species richness (Peng 

et al., 2019). Other commonly-used indices to distinguish different vegetation types 

that simultaneously correct for soil background are the soil-adjusted vegetation index, 

and the modified soil-adjusted vegetation index (Govender et al., 2007).  

The spectral variation hypothesis (SVH) suggests that high biodiversity may show high 

spectral heterogeneity and low biodiversity low spectral heterogeneity (Rocchini et al., 

2007). Therefore, the calculation of spectral heterogeneity captured by UAS 

throughout a study area may be used as a proxy for the functional diversity or species 

diversity (Peng et al., 2019). The standard deviation (sd) or another measure to capture 

the variance can be calculated for single, multiple or combination of bands and then 

be linked with the species richness. The variance metrics show a positive correlation 

with the species diversity according to the SVH. However, an important condition is 

that the grain size of the studied ecosystem matches the spatial resolution of the RS-

data. When collecting for example high spatial resolution data of plant individuals that 



 

15 
 

are larger than the pixel size, an object-based classification needs to be done before 

applying the SVH. Otherwise, the spectral variation inside one object will also be 

considered as species diversity. Furthermore, all the pixels that add additional 

unwanted variation, such as roads, need to be masked out. In some studies or study 

areas, no evidence is found confirming the SVH, often because of not applying one of 

these conditions (Gholizadeh et al., 2020; Möckel et al., 2016; Peng et al., 2019). 

Hyperspectral data seems to be better for linking spectral heterogeneity with species 

richness compared to multispectral data because the right selection of bands is very 

crucial (Rocchini et al., 2007).  

Most forest biodiversity studies using UAS-collected multispectral data, indirectly 

estimate biodiversity through species classification rather than directly determining a 

measure of biodiversity (Franklin & Ahmed, 2018; Peng et al., 2021; Xu et al., 2020). 

This method requires knowledge about the spectral signature of the different species 

present in the study area but has an overall high accuracy. Segmentation of deciduous 

tree species is found more difficult than conifer tree species, generally resulting in a 

lower classification accuracy (Franklin & Ahmed, 2018). Several studies indicate that 

adding a structural component significantly improves the accuracy of classification 

(Gini et al., 2018; Peng et al., 2021). UAS-derived photogrammetric products can be 

used in that regard as alternative for expensive LiDAR surveys (González-Jaramillo et 

al., 2019). 

The direct method of using spectral heterogeneity as proxy of species diversity, is 

mostly tested with satellite imagery for forest ecosystems (Gholizadeh et al., 2020). 

Generally, low but significant determination coefficients are found using simple 

univariate models to link spectral heterogeneity with local species richness (Peng et 

al., 2019; Rocchini et al., 2018). Some studies document that the success of the SVH 

might be season dependent and strongly is affected by the choice of spectral 

heterogeneity measures (Madonsela et al., 2021). Overall, no consistent success of 

using specific vegetation or spectral heterogeneity indices to predict species richness 

is achieved. Only a limited amount of studies have assessed the possibility of UAS, or 

remote sensing in general, to monitor forest biodiversity over time (Gholizadeh et al., 

2020). Another bottleneck nowadays in forest remote sensing is model transferability. 

Most of the UAS-based models are region and vegetation specific whereby it is not yet 
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possible to apply them to other study areas or make useful comparisons (Peng et al., 

2019; Toivonen et al., 2021). 

To conclude, the development of methods for estimating functional and species 

diversity based on fine-scaled UAS data has still a big growth potential. A lot of different 

spectral indices have been developed and evaluated to predict plant alpha-diversity. 

However, because of the large variability in RS platforms, sensors and vegetation 

types, consensus about an optimal spectral index that directly relates species diversity 

with spectral data is yet to be found. 
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1.3 Research Goals 

Biodiversity loss is one of the most pressing global problems nowadays. Hand in hand 

with species, a lot of ecosystem functions and services are diminishing. To be able to 

take conservation and restoration actions, capturing accurate data frequently 

throughout time is needed. UAS imagery with high spectral, spatial, and temporal 

resolution could be crucial means to do so.  

Given the potential of using multispectral drone data, drone flight missions were 

conducted at the different sites of the FORBIO tree experiment to assess the 

effectiveness in predicting tree species diversity and productivity. We extracted both 

spectral and plant height data from the UAS imagery and used it to build models to 

predict tree species richness on the one hand and tree species productivity on the 

other hand by combining the multispectral data with ground truth data. We also 

documented a pipeline of the steps of collecting, processing and analysing drone data 

that can be used as manual for future research using drones. In this thesis, the 

following more specific research questions will be answered: 

- Is it possible to predict species identity, composition and/or richness based on 

multispectral drone data? 

- Which bands or band combinations are most suitable to do so? 

- Will adding a structural vegetation component, i.e. plant height, increase the 

accuracy? 

- Can the productivity be modelled based on multispectral drone data? 

- Is the biodiversity-productivity hypothesis valid?  

- How can the process of collecting drone data be optimized?  
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2 Materials and Methods 

2.1 Study Sites 

The study was performed in the three sites of the FORBIO (FORest BIOdiversity and 

Ecosystem Functioning) experiment distributed across Belgium: Hechtel-Eksel, 

Zedelgem and Gedinne (Figure 2-1). Between 2009 and 2012 the FORBIO experiment 

was established to assess the effect of tree species diversity on forest biodiversity and 

ecosystem functioning. This long-term tree experiment is part of the largest worldwide 

network of biodiversity experiments TreeDivNet (Verheyen et al., 2013). Each FORBIO 

site is subdivided into different plots where trees are planted in monocultures or 

mixtures with two to four species (Figure 2-1). Because the abiotic conditions are 

constant at a site while the species diversity differs between the plots, forest 

biodiversity dynamics can easily be evaluated. Although the experimental design is 

similar for each site, the soil and climatological characteristics differ.  

 

Figure 2-1 The three FORBIO sites situated on the map of Belgium together with their experimental designs. The 
colour of each plot indicates the number of species planted in mixture or monoculture (copied from Verheyen et al., 
2013). 
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2.1.1 Hechtel-Eksel 

The Hechtel-Eksel site is approximately 8 ha in size and located in the Campine 

ecoregion on a dry sandy soil (51°10’N 5°19’E, 55-56 m a.s.l.). The region has a mean 

annual temperature (MAT) of 9.0°C and a mean annual precipitation (MAP) of 799 mm. 

In late autumn of 2012, in total 23,040 trees were planted in 40 different plots, each 

with a plot size of 36 m x 36 m. As at each site, the trees were planted on a 1.5 m x 

1.5 m grid, resulting here in a density of 576 trees per plot. Plot 0 was left unplanted 

for spontaneous succession. In the mixed plots, trees of the same species were 

planted in small patches of 3 x 3 trees, except sometimes at the edges where larger 

cells were used (Figure 2-2). In plots with three or four species, these 3 x 3 cells were 

randomly arranged and in plots with two species a checkerboard pattern was used 

(Verheyen et al., 2013). This design is found in all three sites. The following five 

different species were planted at the Hechtel-Eksel site: silver birch (Betula pendula 

Roth.), Japanese larch (Larix kaempferi Sarg.), Scots pine (Pinus sylvestris L.), 

Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and sessile oak (Quercus petraea 

(Mattuschka) Liebl.). The planted trees originate from the nursery Opdebeeck, located 

in Putte (Verheyen et al., 2013). 

 

Figure 2-2 Experimental planting design of a two-species mixture plot (no. 4 in Zedelgem). Each tree is represented 
by a number and the colours indicate the species: silver birch (yellow) and Scots pine (pink) 
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2.1.2 Zedelgem 

The Zedelgem site is situated closer to the North Sea in the Cuesta ecoregion on a 

sandy to loamy sand soil (51°9’N 3°7’E, 11-16 m a.s.l.). The climate in Zedelgem is a 

bit milder with lower temperatures in the summer and higher temperatures in the winter 

(MAT = 9.5°C, MAP = 687 mm). This site, established on former agricultural land in 

the winter of 2009-2010, is approximately 9.5 ha large. At each of the 42 m × 42 m 

plots, 784 trees were planted, resulting in a total of 32,810 trees divided over the 42 

plots. Again, five different species were used in mixture or monoculture: silver birch, 

common beech (Fagus sylvatica L.), Scots pine, pedunculate oak (Quercus robur L.) 

and small-leaved lime (Tilia cordata Mill.). In half of the plots the same provenance, i.e. 

Vekedelle West, of pedunculate oak was planted. In plots with numbers 21 to 42, a 

mixture of three different provenances was used. This was done to be able to evaluate 

the effect of genetic diversity on forest biodiversity and ecosystem functioning 

(Verheyen et al., 2013). 

2.1.3 Gedinne 

The Gedinne site is situated in the Ardennes ecoregion in the southern part of Belgium 

and divided into two subsites: Gribelle (49°60’N 4°59’E, 367-376 m a.s.l.) and 

Gouverneurs (49°59’N 4°59’E, 421-426 m a.s.l.). Both the subsites are about 4.5 ha in 

size and have a moderately dry loam soil. Compared to the other two sites, the climate 

is colder and wetter (MAT = 6.9°C, MAP = 1021 mm). In early spring of 2010, in total 

44 plots were planted at the Gedinne site, 22 at each subsite. Most of the plots have a 

size of 42 m x 42 m, except for thirteen plots that measure 42 m x 37.5 m, with 700 

trees per plot. Following tree species were planted, again in mixture or monoculture: 

sycamore maple (Acer pseudoplatanus L.), common beech, sessile oak, hybrid larch 

(Larix x eurolepis Henry), and Douglas fir. Similar to the Zedelgem site, at half of the 

plots, three different provenances of common beech were used to assess the genetic 

diversity (Verheyen et al., 2013). 
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2.2 Field Data 

In this study, no field data was collected, because the planting data were considered 

as ground truth data and were readily available. For each site, the number of species, 

the number of trees per species and the total number of trees planted were available 

per plot. The delineation of the plots in the coordinate reference system (CRS) Belgian 

Lambert 72 (EPSG:31370) was also available for each site. 

2.3 Multispectral Data 

2.3.1 Drone and Camera Characteristics 

The drone used to perform the flights is a DJI Matrice 210 RTK V2 (Figure 2-3). The 

drone weighs approximately 4.91 kg, batteries included, and has unfolded the following 

dimensions: 883 mm x 886 mm x 398 mm (DJI, 2019). It is a multi-rotor drone with four 

propellers attached to independently driven motors. By changing the speed of different 

propellers, it can easily turn around its roll, yaw and pitch axis. The two D-RTK 

antennas allow for more accurate positioning data and ensure a more stable flight 

because it interferes less with metal objects (DJI, 2019). Through this D-RTK module, 

a connection can be made with a ground station or an RTK network. The M210 RTK 

V2 has an advanced power management and is powered by two TB55 Intelligent Flight 

batteries with a voltage of 22.8 V and a capacity of 7,660 mAh each. With fully charged 

batteries and no payload, the drone has a maximum flight time of 33 minutes. To fly 

the drone, the remote controller with a CrystalSky Monitor attached was used (DJI, 

2019). 

To ensure safety, the M210 RTK V2 contains a built-in DJI AirSense that automatically 

gives an alert of aircraft nearby on the CrystalSky Monitor. Also, when the drone loses 

connection with the remote controller or the battery is low, it will automatically return to 

the last recorded Home Point and trigger the landing protection. The landing protection 

will check if the ground is suitable for landing and the pilot can still alter the orientation 

with the remote controller to ensure a perfect landing (DJI, 2019).  
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Figure 2-3 Image of used DJI Matrice 210 RTK V2 drone equipped with the Micasense Altum sensor (Van den 
Boer, M., 2021). 

A Micasense Altum sensor was attached to the M210 RTK V2 (Figure 2-3). This is a 

multispectral sensor that captures six different bands (red, green, blue, red edge, near-

infrared and thermal) with a high spatial resolution (Figure 2-4). The sensor stores files 

for each band in a 16-bit TIFF with a resolution of 2064 x 1544 pixels except for the 

thermal band which has a lower resolution of 160 x 120 pixels (Micasense Inc., 2021). 

At a flying height of 120 m, the GSD of the thermal band and the five other bands are 

respectively 5.82 cm and 81 cm. The Micasense Altum sensor is also integrated with 

a Downwelling Light Sensor 2 (DLS 2) on top of the drone (Figure 2-3). This sensor 

stores information about the ambient light and sun angle during the flight in the 

metadata of the image files (Micasense Inc., 2020). That information can be used 

during processing to correct for changing light conditions as discussed in section 1.2.2. 

 

Figure 2-4 The six different bands captured by a Micasense Altum sensor: blue, green, red, red-edge, NIR and 
thermal (modified from AgEagle Sensor Systems Inc., 2021). 

2.3.2 Data Collection 

Following sections primarily describe the steps of collecting, processing and analysing 

drone data during this research. However, it is also intended as a manual that can be 

used for future research. 
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Pre-flight Activities 

Flying a drone is subject to legal regulations. To be allowed to operate as a pilot in the 

subcategories OPEN A1 and A3, which cover the conditions of this study, I followed 

an online training continued by an exam provided by the Belgian Civil Aviation Authority 

in cooperation with EASA (Figure 2-5). To get the certificate, good knowledge about 

air traffic safety, restrictions and regulations, limitations to human performances, 

general knowledge of UAS, privacy, insurance and security is required. 

 

Figure 2-5 Pilot certificate of subcategories OPEN A1 and A3. 

Next to the regulations, various other restrictions can apply. The Skeyes drone guide 

(https://map.droneguide.be) was consulted to plan the flight mission dates and times 

for each site based on the UAS geographical zone statuses. When certain geo zones 

are active, it can impose a restriction on the flying height and/or time. For most geo 

zones this is announced well upfront, but for Helicopter Training Areas (HTA) the 

activation is only communicated one day in advance. The Hechtel-Eksel site is situated 

near the military basis of Kleine-Brogel, whereby during the day you cannot fly with a 

UAS because it is inside the controlled airspace area (Figure 2-6). For these flights 

(performed after the operational hours), the military basis was informed well in 

advance. In Zedelgem, an HTA was active on the day of the flight mission (Table 2-1).  
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Figure 2-6 Location of the Hechtel-Eksel FORBIO site inside the Kleine-Brogel controlled airspace area (blue 
contour). This is an active geozone (EBBL_Kleine-Brogel CTR) where no drone flights can be executed during the 
day (copied from Skeyes, 2021). 

Table 2-1 Duration of the active geo zones at the day of the flight missions at each FORBIO site (only the ones 
applicable to drone flights, that have a relatively low flight height < 60 m). 

Site Date Active geo zone Duration 

Hechtel-Eksel 20/07/2021 EBBL_Kleine-Brogel CTR 06:30 – 17:30 

Zedelgem 25/08/2021 HTA10A 

HTA10A 

09:00 – 12:30  

13:30 – 16:00 

Gedinne 26/08/2021 / / 

Besides checking the local flying restrictions, weather forecasts were also consulted to 

plan the flight missions. Rain and/or strong winds make missions dangerous because 

of unclear vision or abrupt changes in the flying path. Additionally, the drone and 

sensor equipment cannot withstand such harsh conditions. The UAV forecast app was 

used to check the weather conditions the day of the mission and again right before 

take-off. 

Landowners of each site were asked for permission and they were informed at what 

exact time the drone flights would take place. Lastly, the details of the mission and the 

licenced pilots that would execute them were registered in the Drone Service 
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Application (DSA) Planner provided by Skeyes. Skeyes needs to approve the mission 

in advance. On the day of the flight, you need to inform them once more via DSA Fly 

when the drone is in the air, when it is landed and when the drone operation is finished. 

In that way, they can alert you by phone if you must land immediately due to certain 

unforeseen circumstances e.g. an aircraft in distress.  

Flight planning and execution 

The flights were executed on three different days in the summer of 2021 (Table 2-2).  

Table 2-2 Data and time of each flight mission in the different FORBIO sites. 

Site Subsite Date Start time 

Hechtel-Eksel  20/07/2021 17:30 

Zedelgem  25/08/2021 12:30 

Gedinne Gribelle 26/08/2021 10:30 

Gouverneurs 26/08/2021 12:50 

First, different flight missions were configured in the DJI Pilot app (Figure 2-7). This 

allows the drone to fly autonomously and you can apply the same settings (e.g. flight 

altitude, % overlap between the images…) for every flight, resulting in better and more 

consistent data. A polygon of the preferred flight area was drawn by visually marking 

the border points of the plots on a satellite base map. To limit the flying time and avoid 

crossing walking paths, the plots were subdivided into blocks for different flight 

missions (Figure 2-8). Respectively four, five, three and two flight missions were made 

for the sites in Hechtel-Eksel, Zedelgem, Gribelle and Gouverneurs. In Hechtel-Eksel, 

plots 24, 28, 32, 36 and 39 were not included in the flight mission plans because the 

flight would take too long. Plot 8 at the Zedelgem site was not included because of its 

proximity to a power line. 
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Figure 2-7 Start screen at DJI Pilot App with two different options: manual flight or mission flight (copied from DJI, 
2019). 

 

Figure 2-8 The three FORBIO sites situated on the map of Belgium together with their experimental designs. The 
colour of each plot indicates the number of species planted in mixture or monoculture. The red contours indicate 
the different flight missions (modified from Verheyen et al., 2013). 
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For every flight mission, the flight height was set at 40 m above ground level and the 

front and side overlap both at 75% (Figure 2-9). The MicaSense Altum camera was 

selected and the photo mode was set at ‘distance interval shot’ in order to have 

consistently a photo taken at the same distance. 

 

Figure 2-9 Visualisation of front and side overlap of 75% in a flight mission plan: left theoretical, right on the field 
(AgEagle Sensor Systems Inc., 2021; Van den Boer, M., 2021). 

After the flight missions were made and saved, a proper take-off/landing point was 

chosen. It needs to be a flat surface, clear of objects where a good view over the flight 

path is ensured (Figure 2-10). Next, the drone compass was calibrated by turning the 

drone around all its six axes as indicated on the Aircraft Status Bar in the DJI Pilot app. 

At the sites in Flanders (Hechtel-Eksel and Zedelgem) connection was made with the 

mobile RTK-network FLEPOS and at the Gedinne site with the mobile RTK-network 

Walcors. By connecting via the DJI Pilot app to these networks, more accurate 

positioning is established, which will ensure a more stable flight. 

 

Figure 2-10 Photo of the take-off/landing point at the Hechtel-Eksel FORBIO site (Van den Boer, M., 2021).  
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Then it was checked if the drone was fully equipped and ready to take off:  

- Sufficient battery level of the remote controller, Intelligent Flight Batteries and 

display device depending on flight time 

- D-RTK antennas locked properly 

- Propellors having free rotation 

- MicaSense Altum sensor 

o Protective cover removed 

o MicroSD card inserted 

o Connected with DLS 2 

- DJI Pilot app having a connection with the drone 

Lastly, right before and after every flight, a reflection calibration was executed. This 

was done by capturing an image of the Calibrated Reflectance Panel (CRP) by holding 

the drone about 1 m above it while making sure it is not covered by any shadow of a 

person or object nearby (Figure 2-11). In the case that no DLS 2 is connected to the 

drone’s camera, these images can be used during processing to correct for the incident 

light conditions at the time of the flight. However, this radiometric correction assumes 

a rather constant reflectance during the flight because no real-time atmospheric 

conditions are measured. Therefore, it is less accurate than the DLS 2 where the 

images of the CRP are used to calibrate the DLS 2. Integrating CRP and DLS 2 

significantly improves the radiometric correction for changing atmospheric conditions 

(C. Wang, 2021).  

 

Figure 2-11 Calibrated Reflectance Panel to correct for incident light conditions at the time of the flight mission 
(copied from AgEagle Sensor Systems Inc., 2021) 

During the flight, it was important to make sure the drone was always in the visible line 

of sight (VLOS) of the pilot. If not, when the drone was beyond the visible line of sight 

(BVLOS), the pilot was always in contact with someone that had the drone in VLOS. 
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This is needed to make sure the pilot can take over the drone at any time. Because of 

the same reason, the operating pilot could not be disturbed during the flight by passers-

by. Therefore, a fluorescent vest with the inscription ‘Pilot DO NOT DISTURB’ was 

worn during the flights (Figure 2-12). 

 

Figure 2-12 Photo of drone pilot with fluorescent vest with the inscription ‘Pilot DO NOT DISTURB’ (Van den Boer, 
M., 2021). 

After the flight, the reflection calibration was executed again as explained before and -

when necessary - Skeyes was informed via the DSA Fly that we landed again. After 

inspection, the drone was folded and stored. The data was uploaded immediately via 

the microSD card to an external disk. At home, all the batteries were recharged to be 

fully operational for the next flight. 

2.4 Preprocessing 

2.4.1 Preprocessing using MAPEO 

First, multiple flights were pre-processed with PIX4Dmapper. However, this 

photogrammetry software had difficulties processing the large datasets on computers 

with limiting computing power, resulting in calibration problems and poor imaging. The 

key point image scale, the number of key points and the calibration method were 

adapted trying to improve the processing, but it did not result in the desired quality. 

Therefore, the MAPEO services of VITO were used for the image pre-processing. Each 

flight mission is processed separately in MAPEO Field Software 1.0.5 using the 

following steps. To upload a new mission, first, the right mission profile ‘Micasense 

Altum’ was selected out of a list with different pre-programmed sensors (Figure 2-13). 

For the data quality check later, the default settings were used. If the used sensor is 

not present in the dropdown menu, the characteristics can be added manually. 
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Figure 2-13 First step of mission creation to pre-process drone data with MAPEO Field Software. A mission profile 
can be selected out of a dropdown menu or can be manually added. 

Next, the mission data was uploaded (Figure 2-14). This includes a folder with all the 

images of the mission, together with the before and after flight images of the Calibrated 

Reflectance Panel, and a kml-file of the region of interest (ROI). Then, the first and last 

images of the flight path were selected on the map and the flight height was set at 

40 m. As result, the flight lines were drawn automatically (Figure 2-15). The next step 

was validating the overlap of the images inside the ROI: the bluer the colour, the better 

the result (Figure 2-15). In this step, ground control points (GCP) could be added if 

measured in the field, which was not the case in this research. As the last step of the 

mission creation, the flight description was added (Figure 2-16). Only the mission’s 

name needed to be filled in because the other fields were pre-filled automatically since 

we used a pre-programmed sensor. 
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Figure 2-14 Second step of mission creation to pre-process drone data with MAPEO Field Software. Drone images 
can be uploaded by ‘select image folder’ and the right flight height needs to be given. 

 

Figure 2-15 Second step of mission creation to pre-process drone data with MAPEO Field Software. The first and 
last images need to be selected whereby the flight lines are drawn automatically (left). By validating overlap inside 
the region of interest, an overview of the overlap quality is given in a colour scale (right): the bluer, the better. 
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Figure 2-16 Third and last step of mission creation to pre-process drone data with MAPEO Field Software. In this 
step the flight description needs to be given. When a pre-programmed sensor is used only the mission name should 
be filled in. 

Before uploading the mission for pre-processing, the quality checks were consulted 

(Figure 2-17). At this point, input data could be adapted to improve the quality 

depending on the type of error. In this research, no improvements were possible with 

the available data. However, if for example some images do not have valid coordinates, 

these images could be removed to improve the processing quality. Next, the data was 

uploaded for standardized photogrammetric and radiometric processing. As output, a 

multiband raster image, a digital terrain model (DTM), a digital surface model (DSM) 

and an NDVI raster image were created per flight mission.  
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Figure 2-17 Quality check step to pre-process drone data with MAPEO Field Software. A check mark indicates that 
the quality is good, an exclamation marks points out there might be a problem and a cross mark shows that there 
is a problem. 

2.4.2 Preprocessing Raster Data per Plot 

All analyses were performed using R version 4.2.1 (R Core Team, 2022). A schematic 

overview of the steps to extract the raster data per plot is given in Figure 2-18 and 

explained here in more detail. First, the perimeter of each site (shapefile) was imported 

and transformed from Belgian Lambert 72 (EPSG:31370) to World Geodetic System 

1984 (WGS 84) with the sf package (Pebesma, 2018). Using the same package, the 

plot sizes were reduced by 4 m at each side to minimize edge effects and correct slight 

positioning errors in the drone data. For example, a plot size of 42 m x 42 m was 

reduced to 34 m x 34 m. Before further processing, the data was reviewed by removing 

some plots. The data of plots 5 and 9 in Hechtel-Eksel and plot 21 in Gouverneurs 

were not used because after MAPEO pre-processing, in more than half of these plot 

sizes data was missing due to some malfunctioning during data capturing or 

processing. 
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Figure 2-18 Schematic overview of the steps followed to extract the mean, standard deviation (SD) and correlation 
of variation (CV) of the different raster layers per plot in each FORBIO site. 

Next, DTMs of Flanders and Wallonia were requested and downloaded (Agentschap 

Digitaal Vlaanderen, 2014; Service public de Wallonie, 2014). Both these DTMs are a 

result of LiDAR data acquisitions from a period between 2013 and 2014. The ground 

resolution of both datasets is 1 m and their CRS is Belgian Lambert 72 (EPSG:31370). 

These data were used instead of the DTM results from the MAPEO processing 

because they have higher accuracy.  

All following steps were applied to the data of each flight mission separately. The 

MAPEO pre-processed raster layers (multiband rasters, NDVI rasters, DSM rasters) 

and the DTM rasters of Flanders and Wallonia were imported in R using the raster 

package (Hijmans, 2022a). Then they were cropped to the extent of the corresponding 

site. With the dplyr package, the plots reduced in size were masked out the resulting 

raster datasets to only keep information from inside the plots (Wickham et al., 2022).  
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Based on the NDVI, a mask layer was created to mask out pixels with no vegetation 

or dead vegetation inside the plots. All pixels with an NDVI value larger than 0.3 were 

given the value one and the other pixels a value of zero. This boundary was chosen 

because healthy vegetation generally has an NDVI larger than 0.3 (Jones & Vaughan, 

2010). The created mask layers were multiplied with all the other raster layers and then 

the zero values were replaced by NA-values. All resulting raster datasets were 

exported to TIFF files.  

The next step was to extract a mean value and the standard deviation (sd) for each of 

the variables per plot. This was done by first importing the masked layers using the 

terra package (Hijmans, 2022b). With the exactextractr package, the mean and sd 

were extracted per plot per flight mission (Daniel Baston, 2022). Next, the correlation 

of variance (cv) was calculated per plot for all the reflectance bands, the NDVI and the 

plant height by dividing the sd by the mean. 

2.5 Species Richness and Productivity Calculation 

The alpha diversity in each plot was calculated based on the number of trees per 

species present in each plot. Examples of some popular indices to calculate alpha 

diversity are the Shannon index, Simpson index, species richness, and Rao quadratic 

entropy index (Leinster & Cobbold, 2012). However, effective numbers of species 

(ENS) are recently more used as a measure because they make diversity comparisons 

and percentage changes meaningful (Leinster & Cobbold, 2012). Therefore, this last 

index was calculated as measure of alpha diversity. As the evenness for all plots 

equals one, both ENSSimpson and ENSShannon are equal to the species richness (SR). 

Therefore, I only consider SR in what follows. 

To calculate the plant height, the DTM raster layers were subtracted from the DSM 

raster layers to generate a canopy height model. The plant height was corrected by 

lowering it by 39 m for all plots and sites. An error in the MAPEO pre-processed DSM 

was observed, which resulted in a plant height much higher than observed during the 

flights. The average drone-based calculated plant height per plot in Hechtel-Eksel was 

compared with the average in situ height measurements per plot in Hechtel-Eksel from 

2019. This difference was assumed to be an approximation of the error and therefore 

subtracted from the plant height in each plot at the different sites. The cv was 

recalculated as well with the new mean plant height. 
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The mean plant height per plot was considered as proxy for forest productivity. Plant 

height is generally a good indicator of tree productivity in the first years, mainly in dense 

plantations, because height growth is still more prominent than diameter growth. The 

net diversity effect (NDE) in each mixture plot per site was calculated as well (Loreau 

M. & Hector. A., 2001). For this analysis the sites were evaluated separately, because 

of the different soil and climatological conditions. The mean plant height of every 

species in monoculture (PHi) was extracted from the data. Then, the expected plant 

height (PHexp) in a mixture was calculated based on the proportion of the different 

species (pi) present in the plot using equation 2.1. Finally, to evaluate the overyielding, 

the NDE was calculated by comparing the expected plant height with the observed 

plant height (PHO; equation 2.2; Van de Peer et al., 2018). A positive NDE will be 

obtained when high-productive species dominate in the mixed plots (positive selection) 

or when species perform better in mixture than in monoculture because of positive 

complementarity (Loreau M. & Hector. A., 2001). 

𝑃𝐻𝑒𝑥𝑝 =  ∑ 𝑝𝑖  𝑥 𝑃𝐻𝑖  𝑁
𝑖    (2.1) 

𝑁𝐷𝐸 = 𝑃𝐻𝑂 −  𝑃𝐻𝑒𝑥𝑝   (2.2) 

2.6 Data Analysis 

Different models to predict the alpha diversity and the productivity were made and 

evaluated. To determine which variables should be used in the model to predict the 

SR and plant height, the correlation between all the different variables was evaluated 

(Appendix XVI). When different variables had a correlation higher than 0.7, only one of 

them was used. Next, the correlation between the SR and the remaining variables was 

assessed. The variables with a correlation lower than 0.1 were not used either, 

because it would only overcomplicate the model. The same variable selection was 

applied for the plant height models. All data was standardized using the vegan package 

(Oksanen et al., 2020). 

Four different models were made to predict SR: one with only spectral data (formula 

2.3), one with only spectral heterogeneity data (formula 2.4), one with only plant height 

data (formula 2.5) and the last one combining spectral and plant height data 

(formula 2.6).  
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𝑆𝑅 ~ 𝑅𝐸 + 𝐵𝑙𝑢𝑒𝑐𝑣 + 𝑁𝐼𝑅𝑐𝑣 +  𝑁𝐷𝑉𝐼𝑐𝑣 + (1 |𝑠𝑖𝑡𝑒)  +  (1 | 𝑓𝑖𝑒𝑙𝑑)  (2.3) 

𝑆𝑅 ~ 𝐵𝑙𝑢𝑒𝑐𝑣 + 𝑁𝐼𝑅𝑐𝑣 + 𝑁𝐷𝑉𝐼𝑐𝑣 +  (1 |𝑠𝑖𝑡𝑒)  + (1 | 𝑓𝑖𝑒𝑙𝑑)   (2.4) 

𝑆𝑅 ~ 𝑃𝐻𝑂 𝑠𝑑 +  (1 |𝑠𝑖𝑡𝑒)  + (1 | 𝑓𝑖𝑒𝑙𝑑)      (2.5) 

𝑆𝑅 ~ 𝑅𝐸 + 𝐵𝑙𝑢𝑒𝑐𝑣 + 𝑁𝐼𝑅𝑐𝑣 +  𝑁𝐷𝑉𝐼𝑐𝑣 +  𝑃𝐻𝑂 𝑠𝑑 +  (1 |𝑠𝑖𝑡𝑒)  + (1 | 𝑓𝑖𝑒𝑙𝑑) (2.6) 

A mixed Poisson regression model was used because the response variable in 

question (species richness) is count data. Both the site and the flight mission were 

included as random effects to take the hierarchical nature of the data into account. To 

start, this was done using the lme4 package (Bates et al., 2015). However, that always 

resulted in singularity problems even when simplifying the models. When a fit is 

singular, a model result is achieved but there is a high chance that it is a false positive. 

As a solution, Bayesian modelling was applied using the brms package to fit the 

abovementioned models (Bürkner, 2017). The number of cores and the number of 

Markov chains were both set at two and the total number of iterations per chain was 

set at 30,000. After the fit, it was checked if model convergence was achieved: Rhat 

needs to equal one and the effective sample size needs to be large enough (>1,000) 

for each parameter. 

The same modelling method as described above was used to model the productivity. 

On the one hand, the observed plant height was modelled in function of spectral data 

(formula 2.7) and on the other hand in function of species richness (formula 2.8). Since 

the plant height is not count data, a Gaussian distribution was used instead of a 

Poisson distribution. 

𝑃𝐻𝑂 ~ 𝐵𝑙𝑢𝑒 + 𝑅𝐸 +  𝑁𝐼𝑅𝑐𝑣 + 𝑁𝐷𝑉𝐼 + (1 |𝑠𝑖𝑡𝑒) + (1 | 𝑓𝑖𝑒𝑙𝑑)  (2.7) 

𝑃𝐻𝑂 ~ 𝑆𝑅 + (1 |𝑠𝑖𝑡𝑒)  + (1 | 𝑓𝑖𝑒𝑙𝑑)      (2.8) 

After the fits, the models were evaluated using the DHARMa package (Hartig, 2022). 

In the case of overdispersion, which was only applicable for the models to predict SR, 

the model fit was repeated but with a negative binomial distribution instead of a Poisson 

distribution. Finally, the results of the complex mixed models were also compared with 

more simple (generalised) linear models to see if the coefficient estimates were similar. 
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The Kruskal-Wallis test with a significance level of 5% was performed per site to 

determine if there was a significant difference in NDE between plots with a different 

SR. This non-parametric test was used because the assumptions of normality were 

not met since the observations were not independent.  When a significant difference 

was observed, the Dunn’s post hoc test with Benjamini-Hochberg adjustment was 

conducted using the FSA package to identify which SR groups were significantly 

different from one another (Ogle et al., 2021). The results were visualised with boxplots 

using the rcompanion package to add letters on top of the boxplots to show significant 

differences (Mangiafico, 2021).   
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3 Results 

3.1 MAPEO-preprocessed Data 

The results across the different flight missions all appear to be similar over the four 

sites, therefore the results of only one randomly chosen flight mission will be presented 

here. The chosen flight mission is situated in Zedelgem and contains plots 5 – 7 and 

plots 13 – 18 (Figure 3-1). The results of the other flight missions can be found in 

appendix. 

 

Figure 3-1 A graphic representation of the FORBIO site in Zedelgem. The red contour line indicates the flight mission 
for which results will be presented (modified from Verheyen et al., 2013).  

After MAPEO pre-processing, a reflection raster with seven different bands is obtained: 

blue, green, red, red edge, near-infrared, longwave infrared and alpha. The range of 

each of the bands is between 0 and 65535 (Figure 3-3). This is because the alpha 

band, used for image visualisation has a value of 65535 and the other bands are not 

yet corrected for it. The terrain height varies between 50 and 65 m and the surface 

height between 50 and 75 m (Figure 3-2). The NDVI appears to be relatively uniform 

and has values between 0 and 1 (Figure 3-4). 

 

Figure 3-2 DTM (left) and DSM (right) in meters of one show case flight mission at the FORBIO site in Zedelgem. 
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Figure 3-3 Reflectance data of one show case flight mission at the FORBIO site in Zedelgem. Six different bands 
are presented from left to right: blue, green, red, red edge (RE), near-infrared (NIR), longwave infrared (LWIR). 

 
Figure 3-4 NDVI of one show case flight mission at the FORBIO site in Zedelgem. 
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3.2 Extracted Raster Data per Plot 

The new plot sizes of the FORBIO site in Zedelgem are 34 m x 34 m compared to the 

original plot sizes of 42 m x 42 m (Figure 3-5). Applying these new plots to the DTM of 

Flanders, results in terrain height between 11 m and 16 m, with higher altitudes in the 

northeast and lower in the west part of the site (Figure 3-6). The mask layer derived 

from the NDVI, has zero values for one gap at the west side and some small spots 

spread over the different plots (Figure 3-7).  

 

Figure 3-5 Plots of the FORBIO experiment in Zedelgem with the colour representing the number of species. On 
the left the original plot sizes are given and on the right the plot sizes reduced by 4 m at each side. 

 

Figure 3-6 DTM in meters of the FORBIO site in Zedelgem. 
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Figure 3-7 A mask layer (right) derived from the NDVI layer (left) where values are lower than 0.3. This is the result 
of one show case flight mission at the FORBIO site in Zedelgem. 

The plant height derived from the DTM of Flanders and the MAPEO DSM ranges 

between 45 m and 55 m (Figure 3-8). The corrected plant height therefore ranges 

between 6 and 16 m. After clipping with the reduced plot sizes, correcting for the alpha 

band and applying the mask layer, more clear variations in the different reflectance 

bands are visible (Figure 3-9). 

 

Figure 3-8 Plant height in meters of one show case flight mission at the FORBIO site in Zedelgem. 
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Figure 3-9 Reflectance data after clipping with size-reduced plots and correcting for the alpha band. This is the 
result of one show case flight mission at the FORBIO site in Zedelgem. Six different bands are presented from left 
to right: blue, green, red, red edge, near-infrared, longwave infrared. 

The mean of the red, green and blue reflectance bands per plot range between 500 

and 1200 with an sd between 400 and 900 (Table 3-1). The RE and the NIR generally 

have a higher mean per plot and therefore a higher sd as well. For every plot, the LWIR 

has a value of 65535 ± 0.5.
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Table 3-1 For the plots of one show case flight mission at the FORBIO site in Zedelgem, represented by plot ID, the number of species and the number of trees per species are 
given.  

Plot ID No. species No. common beech No. pedunculate oak No. silver birch No. small-leaved lime No. Scots pine Total No. trees 

5 2 398 0 0 386 0 784 
6 4 189 199 0 204 192 784 
7 3 0 261 259 264 0 784 

13 1 0 0 0 784 0 784 
14 2 384 400 0 0 0 784 
15 1 0 784 0 0 0 784 
16 4 197 192 190 0 205 784 
17 2 0 384 400 0 0 784 
18 3 0 259 0 264 261 784 

Table 3-2 For the plots of one show case flight mission at the FORBIO site in Zedelgem, represented by plot ID, the mean and standard deviation (sd) of different reflectance 
bands are given: blue, green, red, red edge (RE), near infrared (NIR) and longwave infrared (LWIR). These values are a result after clipping with the reduced plot sizes, correcting 
for the alpha band and applying the mask layer to eliminate dead or unhealthy vegetation pixels.  

Plot ID Blue Green Red RE NIR LWIR Blue sd Green sd Red sd RE sd NIR sd LWIR sd 

5 762 661 563 1440 3373 65535 496 440 406 781 1331 0.50 
6 1205 877 784 1627 4190 65535 792 544 531 859 1558 0.50 
7 766 612 583 1333 3420 65535 547 432 453 779 1440 0.50 

13 806 706 651 1575 3268 65535 478 434 415 767 1227 0.50 
14 1157 916 812 1812 4611 65535 820 609 603 1016 1760 0.50 
15 985 782 699 1539 3617 65535 727 529 536 852 1418 0.50 
16 844 655 619 1362 3396 65535 598 447 459 760 1388 0.50 
17 927 774 762 1708 4129 65535 679 576 581 1044 2052 0.51 
18 1069 771 689 1441 3522 65535 733 505 486 789 1368 0.50 

Table 3-3 For the plots of one show case flight mission at the FORBIO site in Zedelgem, represented by plot ID, the correlation of variance (cv) of different reflectance bands are 
given: blue, green, red, red edge (RE), near infrared (NIR) and longwave infrared (LWIR). The mean, standard deviation (sd) and cv of the NDVI and the corrected plant height 
(PH) are presented as well. These values are a result after clipping with the reduced plot sizes, correcting for the alpha band and applying the mask layer to eliminate dead or 
unhealthy vegetation pixels. 

Plot ID Blue cv Green cv Red cv RE cv NIR cv LWIR cv NDVI NDVI sd NDVI cv PH PH sd  PH cv 

5 0.65 0.66 0.72 0.54 0.39 0.00 0.74 0.12 0.16 9.42 1.06 0.11 
6 0.66 0.62 0.68 0.53 0.37 0.00 0.71 0.12 0.17 10.20 0.87 0.08 
7 0.71 0.71 0.78 0.58 0.42 0.00 0.74 0.12 0.16 12.33 2.15 0.17 

13 0.59 0.62 0.64 0.49 0.38 0.00 0.69 0.12 0.18 9.15 0.88 0.10 
14 0.71 0.66 0.74 0.56 0.38 0.00 0.73 0.13 0.18 9.46 1.43 0.15 
15 0.74 0.68 0.77 0.55 0.39 0.00 0.71 0.14 0.19 9.80 1.45 0.15 
16 0.71 0.68 0.74 0.56 0.41 0.00 0.72 0.13 0.17 12.77 1.50 0.12 
17 0.73 0.74 0.76 0.61 0.50 0.00 0.72 0.13 0.19 12.67 0.94 0.07 
18 0.69 0.66 0.71 0.55 0.39 0.00 0.70 0.12 0.17 11.21 0.81 0.07 
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3.3 Species Richness and Productivity Models 

The model to predict SR based on spectral data has a coefficient of determination (R²) 

value of 0.16 and the only significant variable is the intercept. The intercepts also 

significantly differ across the different sites and flight missions (Table 3-4). When only 

using spectral heterogeneity data, i.e. cv of different bands, the R²-value of the model 

decreases to 0.13. Again, nothing but the intercept is significant (Table 3-4). The model 

to predict SR based on the variation in plant height has a higher R²-value of 0.26. 

Besides the intercept, the sd of the observed plant height is significant as well and has 

an effect size of 0.22 (Table 3-4). The combined model has the highest R²-values of 

the models to predict the species richness (R²-value = 0.33). Only the intercept and 

the sd of the observed plant height with an effect size of 0.21 are significant (Table 

3-4). 

Table 3-4 Results of Bayesian generalised linear models with negative binomial distribution to predict the species 
richness. The estimate, estimate error, lower 95% credible interval, upper 95% credible interval and Rhat are given 
per variable.  

Spectral model 

 Estimate Error l-95% CI u-95% CI Rhat 

Group level effects: sd intercept Flight mission 0.14 0.11 0.01 0.41 1.00 
 Site 0.23 0.28 0.01 0.98 1.00 
Population level effects Intercept 0.86 0.19 0.48 1.22 1.00 
 RE -0.09 0.09 -0.27 0.08 1.00 
 Blue cv 0.16 0.10 -0.03 0.37 1.00 
 NIR cv -0.05 0.12 -0.29 0.19 1.00 
 NDVI cv -0.04 0.11 -0.27 0.15 1.00 

Spectral heterogeneity model 

  Estimate Error l-95% CI u-95% CI Rhat 

Group level effects: sd intercept Flight mission 0.11 0.09 0.00 0.35 1.00 
 Site 0.25 0.36 0.01 1.00 1.00 
Population level effects Intercept 0.87 0.19 0.47 1.23 1.00 
 Blue cv 0.15 0.10 -0.04 0.36 1.00 
 NIR cv -0.02 0.11 -0.25 0.21 1.00 
 NDVI cv -0.05 0.10 -0.27 0.14 1.00 

Plant height model 

  Estimate Error l-95% CI u-95% CI Rhat 

Group level effects: sd intercept Flight mission 0.08 0.06 0.00 0.24 1.00 
 Site 0.21 0.25 0.01 0.85 1.00 
Population level effects Intercept 0.84 0.17 0.50 1.15 1.00 
 PHO sd 0.22 0.06 0.11 0.34 1.00 

Combined model 

 Estimate Error l-95% CI u-95% CI Rhat 

Group level effects: sd intercept Flight mission 0.11 0.09 0.00 0.33 1.00 
 Site 0.31 0.39 0.01 1.27 1.00 
Population level effects Intercept 0.82 0.24 0.34 1.27 1.00 
 RE -0.04 0.08 -0.22 0.12 1.00 
 Blue cv 0.08 0.11 -0.13 0.30 1.00 
 NIR cv -0.03 0.13 -0.29 0.21 1.00 
 NDVI cv -0.01 0.11 -0.24 0.18 1.00 
 PHO sd 0.21 0.06 0.09 0.34 1.00 
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The model to predict the plant height based on spectral data has an R²-value of 0.72. 

Two different variables are significant: the RE band and the NDVI, with effect sizes of 

respectively -0.42 and 0.43 (Table 3-5). When modelling the plant height solely based 

on SR, the R²-value decreases to 0.69. The SR is the only significant variable and has 

an effect size of 0.11 (Table 3-5). 

Table 3-5 Results of Bayesian linear models with Gaussian distribution to predict the plant height. The estimate, 
estimate error, lower 95% credible interval, upper 95% credible interval and Rhat are given per variable.  

Spectral model 

 Estimate Error l-95% CI u-95% CI Rhat 

Group level effects: sd intercept Flight mission 0.37 0.18 0.09 0.79 1.00 
 Site 1.48 0.80 0.57 3.53 1.00 
Population level effects Intercept 0.07 0.75 -1.45 1.60 1.00 
 Blue 0.17 0.13 -0.09 0.42 1.00 
 RE -0.42 0.15 -0.72 -0.13 1.00 
 NIR cv 0.14 0.12 -0.09 0.37 1.00 
 NDVI 0.43 0.19 0.02 0.61 1.00 

Species Richness model 

  Estimate Error l-95% CI u-95% CI Rhat 

Group level effects: sd intercept Flight mission 0.29 0.13 0.07 0.59 1.00 
 Site 1.30 0.74 0.51 3.20 1.00 
Population level effects Intercept -0.22 0.68 -1.58 1.17 1.00 
 SR 0.11 0.05 0.02 0.20 1.00 

In 80% of all the mixed plots, a positive NDE is observed. When looking per site, this 

percentage is higher in Zedelgem (97%) and lower in Hechtel-Eksel and Gedinne (70% 

and 72%). However, the NDE shows no significant difference with increasing SR at the 

Hechtel-Eksel site (p-value = 0.24) and at the Gedinne site (p-value = 0.28; Figure 

3-10). There is more variation present in the Gedinne data set. At the Zedelgem site, 

the NDE significantly differs between plots with a different SR (p-value < 0.01). Plots 

with three or four species have a significant higher NDE compared to plots with one 

species. The NDE in plots with more than one species do not significantly differ from 

one another (Figure 3-11). 
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Figure 3-10 Net diversity effect per species richness of the FORBIO site in Hechtel-Eksel (left) and Gedinne (right). 

 

Figure 3-11 Net diversity effect (NE) per species richness (SR) of the FORBIO site in Zedelgem. Different letters 
above the boxplots show that the SR have a significantly different NDE according to Dunn’s post hoc test.  
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4 Discussion 

4.1 Spectral Diversity is a Weak Predictor of Tree Species Diversity 

In this study, we tried to predict tree species richness on the one hand and tree 

productivity on the other hand based on collected multispectral drone data. We 

evaluated which parameters were best to be included in the models and how they 

could be improved. A pipeline of the steps of collecting, processing and analysing 

drone data was documented during this study and possible improvements for future 

research will be indicated in this discussion as well.   

The models to predict species richness are not well performing. They all have a weak 

(0.20 – 0.39) or very weak (< 0.20) R²-value. An explanation for that can be that a 

spectral signature is a representation of the functional characteristics more than the 

species characteristics, so that accordingly functional diversity will be evaluated rather 

than species diversity (Tilman, 2001). Certain functional traits (e.g. specific leaf area, 

leaf nitrogen content…) can be measured in situ to compare if spectral models are 

better in predicting those traits than the species itself. By performing flights during 

different seasons, tree phenology can also be taken into account which can improve 

the models to predict species richness (Madonsela et al., 2021). It looks like longwave 

infrared radiation is not useful to predict species richness since it results in images with 

the same mean and standard deviation for each plot. However, it should be noted that 

the resolution of this band is lower, which makes the variable less reliable than the 

others. 

Including a vertical dimension, i.e. plant height data, significantly increases the model 

performance. This confirms the results of other studies (Gini et al., 2018; Peng et al., 

2021). The positive effect size indicates that the higher the variation in plant height, the 

higher the species richness. The variation in vertical tree structure both in even-aged 

and uneven-aged stands is therefore a good indicator of local biodiversity (Peng et al., 

2021). For that reason, it is important to always include a vertical component in models 

to predict species diversity and maybe this is even more required than spectral data. 

The R²-values of the combined model with spectral data and the plant height model 

without spectral data to predict species richness do not differ much. Moreover, in the 

combined model, the standard deviation of the plant height was the only significant 

variable, confirming its importance. 
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Improving the accuracy of the plant height measurements will probably also improve 

the model quality. This can be done in different ways. First, collecting digital surface 

model LiDAR data with cm spatial resolution would give a very accurate representation 

of the tree structures but these sensors are very costly. Another possibility is to execute 

double grid flight missions instead of single grid missions. This results in a more 

accurate point cloud image from which plant height can be extracted but the flight and 

processing time will increase which is not always a better option because of reasons 

that will be explained in section 4.4. A third way to improve plant height data is flying 

during two different seasons over the same site. During early spring with leaf-off 

conditions it is possible to generate an accurate digital terrain model, while in summer 

an accurate digital surface model can be obtained. Combining both will result in a more 

accurate canopy height model (Nasiri et al., 2021). 

4.2 Tree Productivity can be Predicted by Spectral Data 

UAS-based tree height data was used as proxy for productivity in this study. The model 

to predict tree productivity based on spectral data has a strong accuracy (R²-value = 

0.72). Productivity can be accurately predicted by functional traits (Van de Peer et al., 

2018). Since spectral data is related to functional characteristics, it makes sense that 

productivity can be predicted based on spectral data. In the developed model, the NDVI 

has a significant large positive effect on the plant height. A possible explanation is that 

the NDVI is inversely correlated with physiological stress and positively correlated with 

photosynthetic activity (Dash et al., 2018; Wang et al., 2004). Therefore, an increased 

NDVI generally relates to higher productivity. According to the model, a higher red 

edge band value correlates to a decreased plant height. This could be explained by 

the relation between red edge reflectance and tree stress (Masaitis et al., 2013). 

Stressed trees will be less productive compared to healthy trees. Some studies also 

indicate that red edge reflectance is related to the leaf area index, which in turn is 

correlated with tree productivity (Arias et al., 2007; C. Wang, 2021).  

4.3 UAS-based Plant Height Data Confirms the Biodiversity-Productivity 

Hypothesis 

The model to predict tree productivity based on species richness confirms the 

biodiversity-productivity hypothesis: higher species richness results in higher 

productivity. On contrary, the net diversity effect, which compares the observed yield 
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with the expected yield, shows no significant increase with increasing species richness 

at each FORBIO site. However, in 80% of the mixed plots a positive net diversity effect 

is observed proving overyielding in polycultures. The study performed by Van de Peer 

et al. (2018) at the FORBIO sites in Zedelgem and Gedinne six years after planting 

showed similar results: a positive net diversity effect in 83% of the mixed plots. Their 

results were based on in situ tree diameter and height measurements. 

At the Hechtel-Eksel and Gedinne FORBIO sites, the observed net diversity effect in 

monocultures is not significantly higher than in polycultures . Compared to Zedelgem, 

where the plots with more than two species have a significant higher net diversity 

effect, the site in Hechtel-Eksel was established two years later. This could be an 

explanation why no significant overyielding as in Zedelgem is present yet. It takes 

several years before species can benefit from complementarity, which leads to higher 

productivity. However, in high-density plantations, the higher productivity in mixtures 

compared to monocultures could already be visible after a few years (< five years; 

Cardinale et al., 2007). Another reason for the observed non-significant net diversity 

effect could be the poorer sandy soil present in Hechtel-Eksel, compared to a richer 

loamy soil in Zedelgem. The accuracy of the UAS-based plant height measurements 

as predictor for tree productivity could also be a possible explanation. However, this 

accuracy issue could be solved by improving the plant height model generation as 

discussed in previous section. 

The two FORBIO sites in Zedelgem and Gedinne are established in the same year. 

However, in Gedinne there is no significant higher net diversity effect in mixed-species 

plots. The variability in net diversity effect is also larger in Gedinne than at the other 

two sites. The reason for that could be that the Gedinne FORBIO experiment consists 

of two subsites with some minor differences in soil conditions. The climatic conditions 

in Gedinne are harsher compared to Zedelgem. Therefore, fast-growing species that 

are well adapted to these harsh environmental conditions in Gedinne (e.g. Douglas fir, 

Japanese larch) have a competitive advantage over other species (Van de Peer et al., 

2018). The competitive dominance of certain species reducing the performance of 

others at the Gedinne site can be an explanation for the lower, non-significant net 

diversity effect.  

In Zedelgem, the mild climate and the high post-agricultural nutrient availability caused 

the tree species to grow effortless and the species benefited from facilitation rather 
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than being held back by dominance resulting in higher productivity in mixtures (Van de 

Peer et al., 2018). These differences point out the context-dependency of the 

biodiversity-productivity relationship. In Zedelgem, higher levels of species richness 

did not significantly increase the net diversity effect, similarly as observed in the study 

of Van de Peer et al. (Van de Peer et al., 2018).  

4.4 Further Improving Drone Data Collection 

For biodiversity studies, drones have numerous advantages compared to other remote 

sensing platforms and costly, labour-intensive field surveys. However, this study made 

it clear that collecting drone data goes hand in hand with a lot of uncertainty as well. 

First, flight restriction geo-zones pose a limitation on where you can fly. This limits the 

area where and when you can do research. In case of helicopter training areas, it is 

announced only one day in advance if they become active. This requires a good 

relationship with the stakeholders, such as the landowners, as they need to be flexible 

in giving permission with the date and time of flight missions changing more than once. 

Collecting data around solar noon will give the best results because less shadow is 

present in the canopy, but matching this benefit with flight restricted time frames can 

be challenging. 

The weather is undoubtedly a limiting factor in UAS-based studies. In case of rain, 

even a limited amount, your flights need to be postponed. In countries like Belgium, 

the weather is often very unpredictable, which again makes flight planning difficult. 

Also, when the weather changes during the flight mission, the mission needs to be 

aborted and may be repeated later or on another day, which makes the variability 

between different flight missions at the same location larger. Small gusts of wind can 

suddenly rise, which significantly decrease the accuracy of the multispectral data. For 

example, during the last flight missions in Gedinne, the wind gradually came up – 

staying within acceptable ranges – which is probably the cause of some unprocessed 

parts during the MAPEO pre-processing. The DLS 2 sensor, which allows flying under 

non-constant light conditions, is a big improvement in creating less uncertainty. This 

widens the options for possible flight executions. 

It is better to make the flight mission plans in advance, based on the exact perimeter 

of the region of interest, than doing this in the field such as done during this study. This 

will ensure an exact overlap with the field data during processing. For example, in 
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Hechtel-Eksel, one flight mission plan was drawn incorrectly whereby two plots needed 

to be excluded for further analysis. In this case, it was still quite easy to distinguish the 

experiment from the surrounding vegetation on an aerial map, but when the vegetation 

grows, this will become harder and thus more important to make the flight mission 

plans beforehand. However, it is still very important to doublecheck everything in the 

field because small adaptations to the flight mission plans could be required e.g. to 

avoid interaction with large trees, power lines etc.  

Another improvement that can be made, is increasing the side and front overlap from 

75% to 85%. The quality checks during the MAPEO pre-processing indicate that for 

almost every flight mission the real overlap was too low, at some points even lower 

than 65%. The real overlap appears to be inhomogeneous during the entire flight – 

despite the fixed distance interval setting – resulting in some pixels with an overlap 

being lower than the pre-programmed one. This reduces the quality of the images 

significantly and even creates some data gaps. Studies prove that overlap settings are 

usually the variable with the largest effect on the processing quality (de Lima et al., 

2021; Ottoy et al., 2022).  

However, the trade-off between image resolution and computing power needed to 

process the images always needs to be considered. Increasing the overlap by a few 

percentages, can in fact increase the computing time in orders of magnitude when 

generating for example a digital surface model (Torres-Sánchez et al., 2018). When 

increasing the overlap, the flight altitude can be enlarged as compensation. In that way, 

the flight time will not be longer than the battery power can provide and the data 

quantity to be processed will still be within the acceptable range. Some studies have 

evaluated the effect of different processing parameters for photogrammetry (de Lima 

et al., 2021; Ottoy et al., 2022; Young et al., 2022). The chosen altitude, overlap, pitch 

and even the software all influence the result. However, few studies on optimizing the 

parameters regarding UAS-based forest biodiversity studies have been performed up 

to now. 

Measuring some ground control points in the field will improve the data quality as well. 

Even though the drone is connected to the RTK network, this will still enlarge the 

precision. As a result, less size reduction of the plots will be needed during the data 

processing and therefore more data can be used. Flying over forest ecosystems is 

harder than over agricultural fields. Therefore, if you just obtained a theoretical pilot 
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license, I would highly recommend having you assisted by an experienced pilot in more 

difficult environments such as present in this study to ensure safety.  

MAPEO uses WGS84+EGM96 as standard CRS for pre-processing data from DJI 

multispectral sensors. However, our original input data had another CRS, i.e. WGS84, 

which caused incorrect, higher values in the digital surface models and digital terrain 

models. To avoid such problems, this always needs to be checked beforehand. 

However, our applied correction did not influence the final results because all pixels 

were treated equally. 
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5 Conclusion 

Collecting UAS data for forest monitoring applications has numerous advantages 

because of its low cost and high flexibility. However, UAS-based studies have also 

some disadvantages since they are subjected to uncertainties concerning weather and 

geo zone flight restrictions. For achieving the best result, a strict pipeline needs to be 

followed in collecting and processing drone data. Further research is advised to 

optimize the parameters for UAS-based forest biodiversity studies.  

Models predicting tree species richness based on spectral data have low R²-values. 

Adding a structural component significantly improves the model accuracy. Based on 

spectral diversity, it is hard to predict species diversity, since spectral diversity is rather 

related to functional diversity. In general, UAS applications have the potential to 

monitor tree diversity when combined with further research including parameter 

optimization and assessing season variability for long-term monitoring applications. 

However, direct monitoring of tree species diversity based on UAS data will always 

have limitations regarding biodiversity conservation since the ecological importance or 

rareness of species is not considered.  

Spectral data can be used to model tree species productivity with high accuracy. The 

productivity-diversity hypothesis can also be confirmed based on UAS data. To 

evaluate its accuracy, plant height data should be collected in situ and compared with 

the results found in this study. Differences in net diversity effects between the different 

FORBIO sites indicate the context-dependency of overyielding in mixtures. Therefore, 

further research assessing the concrete mechanisms causing these differences is 

required.  
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7 Appendices 

Appendix I List of species present in the FORBIO sites in Belgium.  

Scientific Name English Name 

Betula pendula Roth. silver birch 

Larix kaempferi Sarg. Japanese larch 

Pinus sylvestris L. Scots pine 

Pseudotsuga menziesii (Mirb.) Franco Douglas fir 

Quercus petraea (Mattuschka) Liebl. sessile oak 

Fagus sylvatica L. common beech 

Quercus robur L. pedunculate oak 

Tilia cordata Mill. small-leaved lime 

Acer pseudoplatanus L. sycamore maple 

Larix x eurolepis Henry hybrid larch 
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Appendix II Plots of the FORBIO experiment in Hechtel-Eksel (top), Gribelle (middle) and Gouverneurs (bottom) 
with the colour representing the number of species. On the left the original plot sizes are given and on the right 
the plot sizes reduced by 4 m at each side 
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Appendix III Digital Terrain Model in meters of the FORBIO sites is Hechtel-Eksel (top left), Gribelle (top right) and 
Gouverneus (bottom) 
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Appendix IV DTM (left) and DSM (right) in meters derived from MAPEO-preprocessed drone data. The results of 
the four different flight missions over the FORBIO site in Hechtel-Eksel are given (continued next page). 
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Appendix V Mask layer (right) derived from the NDVI layer (left) where values are lower than 0.3. The results of the 
four different flight missions over the FORBIO site in Hechtel-Eksel are given (continued next page). 



 

69 
 

 



 

70 
 

Appendix VI Plant height in meters derived by subtracting the DTM of Flanders from the MAPEO-preprocessed 
DSM result. The results of the four different flight missions over the FORBIO site in Hechtel-Eksel are given. 
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Appendix VII Reflectance drone data after clipping with size-reduced plots of the FORBIO site in Hechtel-Eksel. Six 
different bands are presented from left to right: blue, green, red, red edge (RE), near-infrared (NIR), longwave 
infrared (LWIR). The results of the four different flight missions over the FORBIO site in Hechtel-Eksel are given 
(continued next pages). 
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Appendix VIII DTM (left) and DSM (right) in meters derived from MAPEO-preprocessed drone data. The results of 
four different flight missions, the ones not presented in sections 3.1 and 3.2, over the FORBIO site in Zedelgem are 
given (continued next page). 
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Appendix IX Mask layer (right) derived from the NDVI layer (left) where values are lower than 0.3. The results of 
four different flight missions, the ones not presented in sections 3.1 and 3.2, over the FORBIO site in Zedelgem are 
given (continued next page). 
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Appendix X Plant height in meters derived by subtracting the DTM of Flanders from the MAPEO-preprocessed DSM 
result. The results of four different flight missions, the ones not presented in sections 3.1 and 3.2, over the FORBIO 
site in Zedelgem are given. 
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Appendix XI Reflectance drone data after clipping with size-reduced plots of the FORBIO site in Zedelgem. Six 
different bands are presented from left to right: blue, green, red, red edge (RE), near-infrared (NIR), longwave 
infrared (LWIR). The results of four different flight missions, the ones not presented in sections 3.1 and 3.2, over 
the FORBIO site in Zedelgem are given (continued next pages). 
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Appendix XII DTM (left) and DSM (right) in meters derived from MAPEO-preprocessed drone data. The results of 
the five different flight missions over the FORBIO site in Gedine (three in Gribelle and two in Gouverneurs) are 
given (continued next page). 
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Appendix XIII Mask layer (right) derived from the NDVI layer (left) where values are lower than 0.3. The results of 
the five different flight missions over the FORBIO site in Gedine (three in Gribelle and two in Gouverneurs) are 
given (continued next page). 
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Appendix XIV Plant height in meters derived by subtracting the DTM of Flanders from the MAPEO-preprocessed 
DSM result. The results of the five different flight missions over the FORBIO site in Gedine (three in Gribelle and 
two in Gouverneurs) are given. 
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Appendix XV Reflectance drone data after clipping with size-reduced plots of the FORBIO site in Gedinne. Six 
different bands are presented from left to right: blue, green, red, red edge (RE), near-infrared (NIR), longwave 
infrared (LWIR). The results of the five different flight missions over the FORBIO site in Gedine (three in Gribelle 
and two in Gouverneurs) are given (continued next pages). 
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Appendix XVI Absolute value of correlation between the different variables. The values higher than 0.7 are given in bold. 

  Mean  sd  cv 

  Blue Green Red NIR RE LWIR NDVI PH  Blue Green Red NIR RE LWIR NDVI PH  Blue Green Red NIR RE LWIR NDVI PH 

Mean Blue 1.00 0.82 0.90 0.40 0.48 0.51 0.48 0.10  0.93 0.74 0.84 0.29 0.41 0.42 0.43 0.21  0.11 0.11 0.18 0.23 0.10 0.42 0.44 0.00 

 Green  1.00 0.80 0.64 0.83 0.74 0.24 0.04  0.76 0.91 0.76 0.55 0.72 0.61 0.19 0.16  0.11 0.11 0.14 0.18 0.09 0.61 0.25 0.10 

 Red   1.00 0.48 0.59 0.46 0.58 0.23  0.87 0.75 0.94 0.33 0.51 0.36 0.55 0.17  0.05 0.02 0.05 0.23 0.01 0.36 0.57 0.30 

 NIR    1.00 0.83 0.51 0.36 0.05  0.57 0.78 0.63 0.90 0.85 0.43 0.29 0.02  0.38 0.34 0.36 0.02 0.28 0.43 0.30 0.03 

 RE     1.00 0.65 0.03 0.14  0.51 0.85 0.62 0.78 0.93 0.54 0.02 0.12  0.15 0.14 0.15 0.00 0.13 0.54 0.03 0.02 

 LWIR      1.00 0.02 0.12  0.44 0.63 0.43 0.44 0.53 0.85 0.11 0.14  0.23 0.28 0.27 0.28 0.27 0.85 0.01 0.03 

 NDVI       1.00 0.27  0.29 0.05 0.36 0.43 0.17 0.03 0.87 0.22  0.28 0.30 0.38 0.28 0.29 0.03 0.94 0.38 

 PH        1.00  0.10 0.11 0.18 0.28 0.26 0.02 0.05 0.34  0.01 0.21 0.25 0.57 0.39 0.02 0.14 0.46 

sd Blue          1.00 0.83 0.93 0.49 0.55 0.35 0.35 0.13  0.24 0.22 0.15 0.04 0.19 0.35 0.31 0.16 

 Green           1.00 0.83 0.77 0.88 0.52 0.14 0.09  0.27 0.29 0.25 0.11 0.28 0.52 0.13 0.05 

 Red            1.00 0.52 0.63 0.33 0.44 0.11  0.29 0.27 0.21 0.08 0.22 0.33 0.41 0.20 

 NIR             1.00 0.91 0.38 0.29 0.01  0.52 0.55 0.56 0.39 0.54 0.38 0.33 0.25 

 RE              1.00 0.45 0.05 0.08  0.41 0.44 0.44 0.29 0.44 0.45 0.06 0.18 

 LWIR               1.00 0.16 0.16  0.22 0.24 0.22 0.22 0.22 1.00 0.06 0.11 

 NDVI                1.00 0.25  0.04 0.00 0.08 0.01 0.02 0.16 0.96 0.21 

 PH                 1.00  0.16 0.08 0.06 0.02 0.01 0.16 0.23 0.73 

cv Blue                   1.00 0.94 0.94 0.59 0.85 0.22 0.15 0.21 

 Green                    1.00 0.97 0.77 0.96 0.24 0.14 0.32 

 Red                     1.00 0.75 0.95 0.22 0.22 0.32 

 NIR                      1.00 0.88 0.22 0.13 0.52 

 RE                       1.00 0.22 0.12 0.38 

 LWIR                        1.00 0.06 0.11 

 NDVI                         1.00 0.28 

 PH                          1.00 
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Appendix XVII For the plots at the FORBIO site in Hechtel-Eksel, represented by plot ID, the number of species and the number of trees per species are given. 

Plot ID No. species No. Scots pine No. sessile oak No. silver birch No. Douglas fir No. Japanese larch Total No. trees 
1 1 0 0 576 0 0 576 
2 3 192 0 192 192 0 576 
3 2 288 0 0 288 0 576 
4 2 0 288 288 0 0 576 
6 4 144 144 144 0 144 576 
7 2 288 288 0 0 0 576 
8 4 144 0 144 144 144 576 

10 4 0 144 144 144 144 576 
11 1 0 0 0 576 0 576 
12 1 0 576 0 0 0 576 
13 3 0 192 0 192 192 576 
14 3 192 192 0 0 192 576 
15 4 144 144 0 144 144 576 
16 1 0 0 0 0 576 576 
17 3 0 192 192 192 0 576 
18 1 576 0 0 0 0 576 
19 3 192 0 192 0 192 576 
20 4 144 144 144 144 0 576 
21 4 144 144 144 0 144 576 
22 1 0 0 576 0 0 576 
23 2 288 0 0 288 0 576 
25 3 192 0 192 0 192 576 
26 1 576 0 0 0 0 576 
27 4 0 144 144 144 144 576 
29 1 0 0 0 576 0 576 
30 1 0 576 0 0 0 576 
31 1 0 0 0 0 576 576 
33 3 0 192 0 192 192 576 
34 3 0 192 192 192 0 576 
35 3 192 192 0 0 192 576 
37 4 144 144 0 144 144 576 
38 2 0 288 288 0 0 576 
40 3 192 0 192 192 0 576 
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Appendix XVIII For the plots at the FORBIO site in Hechtel-Eksel, represented by plot ID, the mean and standard deviation (sd) of different reflectance bands are given: blue, 
green, red, red edge (RE), near infrared (NIR) and longwave infrared (LWIR). These values are a result after clipping with the reduced plot sizes, correcting for the alpha band 
and applying the mask layer to eliminate dead or unhealthy vegetation pixels.  

Plot ID Blue Green Red RE NIR LWIR Blue sd Green sd Red sd RE sd NIR sd LWIR sd 
1 2092 4167 1717 10706 30120 65535 1305 2736 1286 6136 12528 0.49 
2 2418 4138 1716 9259 24985 65535 1714 3033 1441 6464 14293 0.49 
3 3036 4709 2080 8930 21526 65535 2026 3348 1610 5980 12627 0.49 
4 2345 4626 2081 10985 27676 65535 1503 3247 1617 6999 14016 0.49 
6 2335 4036 1646 8705 22886 65535 1724 3127 1436 6347 13652 0.49 
7 2976 4632 1961 8979 23085 65535 2139 3466 1642 6123 12768 0.49 
8 2322 4287 1669 9076 22537 65535 1708 3264 1440 6612 13999 0.49 

10 1383 3062 1073 6653 18026 65535 921 2121 896 4140 8916 0.49 
11 1511 3880 1030 8199 19386 65535 872 2393 701 4674 9293 0.49 
12 1638 3891 1357 8051 19687 65535 974 2604 945 4880 10428 0.49 
13 1641 3938 1243 7557 17341 65535 1043 2597 934 4593 9329 0.49 
14 1135 1589 596 2791 6741 65535 841 1318 519 2296 5048 0.50 
15 1389 2243 757 4199 10621 65535 1008 1703 632 2999 6467 0.50 
16 1131 1890 624 3154 6939 65535 808 1448 515 2238 4564 0.50 
17 894 1713 566 3762 9085 65535 651 1391 544 2943 6166 0.50 
18 1869 2580 1035 4667 11660 65535 1270 1870 826 3141 6643 0.50 
19 707 1051 374 2103 5907 65535 517 837 338 1613 3684 0.50 
20 759 1136 423 2236 5781 65535 593 936 410 1802 3785 0.50 
21 810 1288 460 2607 7000 65535 651 1103 460 2191 4763 0.50 
22 778 1498 502 3663 11279 65535 584 1189 474 2630 5815 0.50 
23 1501 1995 819 3690 9989 65535 1133 1632 757 2987 6944 0.50 
25 2826 4754 2028 10127 23132 65535 1765 3169 1411 6334 12933 0.49 
26 3441 5193 2415 9701 20359 65535 1967 3168 1594 5471 10881 0.49 
27 2555 4878 1803 11143 28071 65535 1681 3471 1405 7180 14935 0.49 
29 2261 5609 1393 12290 25960 65535 1371 3721 999 7624 14214 0.49 
30 2916 5813 2150 11859 24530 65535 1696 4187 1609 8130 15582 0.49 
31 3354 5879 2202 10353 22218 65535 2203 4206 1600 6844 13913 0.49 
33 2583 5377 1683 10778 23574 65535 1733 3823 1275 7012 13404 0.49 
34 2266 4500 1661 10444 24691 65535 1505 3243 1382 7013 13700 0.49 
35 3048 4615 1991 8545 19287 65535 2128 3419 1603 6110 12907 0.49 
37 2963 4871 1942 9358 21148 65535 2081 3529 1509 6332 13034 0.49 
38 2318 4334 1788 10487 27032 65535 1497 3023 1410 6521 12530 0.49 
40 2534 4027 1658 8540 21816 65535 1785 2855 1330 5594 12044 0.49 
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Appendix XIX For the plots at the FORBIO site in Hechtel-Eksel, represented by plot ID, the correlation of variance (cv) of different reflectance bands are given: blue, green, red, 
red edge (RE), near infrared (NIR) and longwave infrared (LWIR). The mean, standard deviation (sd) and cv of the NDVI and the corrected plant height (PH) are presented as 
well. These values are a result after clipping with the reduced plot sizes, correcting for the alpha band and applying the mask layer to eliminate dead or unhealthy vegetation 
pixels. 

Plot ID Blue cv Green cv Red cv RE cv NIR cv LWIR cv NDVI NDVI sd NDVI cv PH PH sd  PH cv 
1 0.62 0.66 0.75 0.57 0.42 0.00 0.90 0.05 0.06 8.39 0.83 0.10 
2 0.71 0.73 0.84 0.70 0.57 0.00 0.88 0.06 0.07 7.03 1.41 0.20 
3 0.67 0.71 0.77 0.67 0.59 0.00 0.83 0.08 0.10 5.93 1.00 0.17 
4 0.64 0.70 0.78 0.64 0.51 0.00 0.86 0.07 0.09 6.08 1.85 0.30 
6 0.74 0.77 0.87 0.73 0.60 0.00 0.87 0.07 0.08 6.40 1.46 0.23 
7 0.72 0.75 0.84 0.68 0.55 0.00 0.86 0.07 0.08 6.25 0.97 0.15 
8 0.74 0.76 0.86 0.73 0.62 0.00 0.87 0.07 0.08 6.41 1.54 0.24 

10 0.67 0.69 0.83 0.62 0.49 0.00 0.89 0.07 0.08 6.18 1.62 0.26 
11 0.58 0.62 0.68 0.57 0.48 0.00 0.91 0.03 0.04 5.45 0.84 0.15 
12 0.59 0.67 0.70 0.61 0.53 0.00 0.86 0.08 0.10 3.33 0.81 0.24 
13 0.64 0.66 0.75 0.61 0.54 0.00 0.86 0.10 0.12 4.56 1.25 0.28 
14 0.74 0.83 0.87 0.82 0.75 0.00 0.81 0.15 0.18 6.30 1.65 0.26 
15 0.73 0.76 0.83 0.71 0.61 0.00 0.87 0.07 0.09 6.65 1.24 0.19 
16 0.71 0.77 0.82 0.71 0.66 0.00 0.83 0.13 0.16 5.16 1.21 0.23 
17 0.73 0.81 0.96 0.78 0.68 0.00 0.89 0.07 0.08 5.94 1.93 0.33 
18 0.68 0.73 0.80 0.67 0.57 0.00 0.85 0.07 0.08 7.69 0.62 0.08 
19 0.73 0.80 0.90 0.77 0.62 0.00 0.88 0.09 0.10 7.71 1.48 0.19 
20 0.78 0.82 0.97 0.81 0.65 0.00 0.87 0.09 0.10 6.82 1.52 0.22 
21 0.80 0.86 1.00 0.84 0.68 0.00 0.89 0.09 0.10 7.15 1.81 0.25 
22 0.75 0.79 0.94 0.72 0.52 0.00 0.93 0.05 0.05 10.31 0.78 0.08 
23 0.75 0.82 0.92 0.81 0.70 0.00 0.86 0.06 0.07 6.73 1.30 0.19 
25 0.62 0.67 0.70 0.63 0.56 0.00 0.83 0.08 0.10 5.97 1.25 0.21 
26 0.57 0.61 0.66 0.56 0.53 0.00 0.78 0.09 0.12 5.65 0.48 0.09 
27 0.66 0.71 0.78 0.64 0.53 0.00 0.88 0.07 0.08 5.77 1.61 0.28 
29 0.61 0.66 0.72 0.62 0.55 0.00 0.90 0.05 0.05 5.19 0.91 0.18 
30 0.58 0.72 0.75 0.69 0.64 0.00 0.81 0.14 0.17 3.03 0.93 0.31 
31 0.66 0.72 0.73 0.66 0.63 0.00 0.80 0.12 0.15 4.54 1.09 0.24 
33 0.67 0.71 0.76 0.65 0.57 0.00 0.86 0.08 0.09 4.88 1.10 0.23 
34 0.66 0.72 0.83 0.67 0.55 0.00 0.88 0.07 0.08 5.69 1.86 0.33 
35 0.70 0.74 0.80 0.72 0.67 0.00 0.79 0.13 0.17 5.16 1.57 0.30 
37 0.70 0.72 0.78 0.68 0.62 0.00 0.82 0.11 0.13 5.38 1.35 0.25 
38 0.65 0.70 0.79 0.62 0.46 0.00 0.88 0.07 0.07 6.89 1.52 0.22 
40 0.70 0.71 0.80 0.66 0.55 0.00 0.86 0.06 0.07 6.41 1.36 0.21 
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Appendix XX For the plots at the FORBIO site in Zedelgem, represented by plot ID, the number of species and the number of trees per species are given. 

Plot ID No. species No. common beech No. pedunculate oak No. silver birch No. small-leaved lime No. Scots pine Total No. trees 
1 4 192 0 192 196 204 784 
2 1 0 0 784 0 0 784 
3 3 261 259 0 0 264 784 
4 2 0 0 384 0 400 784 
5 2 398 0 0 386 0 784 
6 4 189 199 0 204 192 784 
7 3 0 261 259 264 0 784 
9 3 268 0 258 0 258 784 

10 2 0 0 0 400 384 784 
11 1 784 0 0 0 0 784 
12 4 198 201 193 192 0 784 
13 1 0 0 0 784 0 784 
14 2 384 400 0 0 0 784 
15 1 0 784 0 0 0 784 
16 4 197 192 190 0 205 784 
17 2 0 384 400 0 0 784 
18 3 0 259 0 264 261 784 
19 3 258 0 268 258 0 784 
20 4 0 189 207 199 189 784 
21 1 0 784 0 0 0 784 
22 4 0 198 196 189 201 784 
23 4 196 198 189 201 0 784 
24 3 0 268 0 258 258 784 
25 2 384 0 0 400 0 784 
26 2 0 0 400 0 384 784 
27 1 0 0 0 0 784 784 
28 3 267 252 0 0 265 784 
29 4 199 0 198 195 192 784 
30 1 778 0 0 0 0 778 
31 3 237 0 257 234 0 728 
32 3 0 223 256 249 0 728 
33 2 0 400 384 0 0 784 
34 3 262 0 258 0 264 784 
35 4 205 192 0 192 195 784 
36 2 0 0 0 384 400 784 
37 2 400 384 0 0 0 784 
38 1 0 784 0 0 0 784 
39 1 0 0 784 0 0 784 
40 1 0 0 0 784 0 784 
41 4 186 211 198 0 189 784 
42 1 0 784 0 0 0 784 
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Appendix XXI For the plots at the FORBIO site in Zedelgem, represented by plot ID, the mean and standard deviation (sd) of different reflectance bands are given: blue, green, 
red, red edge (RE), near infrared (NIR) and longwave infrared (LWIR). These values are a result after clipping with the reduced plot sizes, correcting for the alpha band and 
applying the mask layer to eliminate dead or unhealthy vegetation pixels.  

Plot ID Blue Green Red RE NIR LWIR Blue sd Green sd Red sd RE sd NIR sd LWIR sd 
1 2979 3597 2875 5844 29283 65535 2466 3102 2683 4428 14776 0.49 
2 3279 4068 3501 6814 29167 65535 2448 3087 2672 4241 14386 0.49 
3 6192 7293 5910 10606 43236 65535 4740 5468 4863 7164 15210 0.49 
4 6058 8265 7244 14632 48504 65535 4598 6518 5978 10312 15795 0.49 
5 762 661 563 1440 3373 65535 496 440 406 781 1331 0.50 
6 1205 877 784 1627 4190 65535 792 544 531 859 1558 0.50 
7 766 612 583 1333 3420 65535 547 432 453 779 1440 0.50 
9 3151 3936 3405 6589 30849 65535 2439 3096 2872 4356 14985 0.49 

10 5198 5657 4381 7719 37446 65535 3704 3883 3337 4599 15224 0.49 
11 4370 6335 4365 10724 50415 65535 2983 4257 3280 5948 14241 0.49 
12 4804 6342 5019 10551 46381 65535 3628 4640 4064 6297 15573 0.49 
13 806 706 651 1575 3268 65535 478 434 415 767 1227 0.50 
14 1157 916 812 1812 4611 65535 820 609 603 1016 1760 0.50 
15 985 782 699 1539 3617 65535 727 529 536 852 1418 0.50 
16 844 655 619 1362 3396 65535 598 447 459 760 1388 0.50 
17 927 774 762 1708 4129 65535 679 576 581 1044 2052 0.51 
18 1069 771 689 1441 3522 65535 733 505 486 789 1368 0.50 
19 2839 4377 3332 8025 11848 65535 1609 2605 1991 3926 4481 0.49 
20 2793 4045 3060 7075 10183 65535 1859 2678 2089 4034 4333 0.49 
21 2974 4568 3166 7390 10647 65535 1693 2651 1931 3710 4129 0.49 
22 3368 4870 3677 7860 12646 65535 1780 2469 1848 3247 4180 0.49 
23 4218 6151 4220 10231 17839 65535 2092 3140 2181 4093 5215 0.49 
24 3996 5345 3928 8394 13032 65535 2377 3083 2370 4277 4788 0.49 
25 2834 5094 3347 9667 12725 65535 1747 3211 2247 5089 4814 0.49 
26 3165 4592 3619 7852 11121 65535 1635 2466 1846 3788 4739 0.49 
27 4492 5264 4021 6973 11677 65535 2412 2745 2019 3117 4120 0.49 
28 5373 7204 4641 10457 18195 65535 2966 3690 2480 4316 5372 0.49 
29 3215 4598 3539 7932 11706 65535 1845 2673 2119 4245 4829 0.49 
30 3315 6815 3989 11327 12535 65535 1768 3805 2334 5641 5084 0.49 
31 2977 4589 3285 8157 11863 65535 1512 2431 1888 3748 4190 0.49 
32 3135 4746 3542 8182 13129 65535 1483 2275 1791 3198 3960 0.49 
33 3076 4751 3730 8677 12345 65535 1846 3061 2424 5025 5659 0.49 
34 2759 3959 3029 6947 9668 65535 1834 2575 2060 4092 4581 0.49 
35 3611 4910 3450 7579 11223 65535 2065 2663 1988 3574 3869 0.49 
36 4197 5096 3819 7106 11747 65535 2207 2432 1860 2707 3587 0.49 
37 2995 4744 3258 8187 12104 65535 1668 2665 1977 3904 4086 0.49 
38 2823 4289 3047 7549 10986 65535 1842 2820 2181 4165 4292 0.49 
39 3169 4946 3840 8732 11879 65535 1554 2574 1814 3911 4867 0.49 
40 3062 5033 3659 9107 11874 65535 1236 2206 1510 3062 3013 0.49 
41 3349 4609 3544 7389 11929 65535 1719 2195 1702 2967 3807 0.49 
42 2986 4363 3188 7191 11744 65535 1787 2509 1983 3334 3955 0.50 
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Appendix XXII For the plots at the FORBIO site in Zedelgem, represented by plot ID, the correlation of variance (cv) of different reflectance bands are given: blue, green, red, red 
edge (RE), near infrared (NIR) and longwave infrared (LWIR). The mean, standard deviation (sd) and cv of the NDVI and the corrected plant height (PH) are presented as well. 
These values are a result after clipping with the reduced plot sizes, correcting for the alpha band and applying the mask layer to eliminate dead or unhealthy vegetation pixels. 

Plot ID Blue cv Green cv Red cv RE cv NIR cv LWIR cv NDVI NDVI sd NDVI cv PH PH sd  PH cv 
1 0.83 0.86 0.93 0.76 0.50 0.00 0.85 0.09 0.10 12.60 1.48 0.12 
2 0.75 0.76 0.76 0.62 0.49 0.00 0.80 0.09 0.11 13.68 2.52 0.18 
3 0.77 0.75 0.82 0.68 0.35 0.00 0.79 0.13 0.16 10.80 0.82 0.08 
4 0.76 0.79 0.83 0.70 0.33 0.00 0.77 0.14 0.19 13.36 1.90 0.14 
5 0.65 0.66 0.72 0.54 0.39 0.00 0.74 0.12 0.16 9.42 1.06 0.11 
6 0.66 0.62 0.68 0.53 0.37 0.00 0.71 0.12 0.17 10.20 0.87 0.08 
7 0.71 0.71 0.78 0.58 0.42 0.00 0.74 0.12 0.16 12.33 2.15 0.17 
9 0.77 0.79 0.84 0.66 0.49 0.00 0.82 0.09 0.11 13.20 1.91 0.14 

10 0.71 0.69 0.76 0.60 0.41 0.00 0.82 0.09 0.11 10.93 0.68 0.06 
11 0.68 0.67 0.75 0.55 0.28 0.00 0.86 0.08 0.09 8.89 0.89 0.10 
12 0.76 0.73 0.81 0.60 0.34 0.00 0.83 0.10 0.12 11.61 1.61 0.14 
13 0.59 0.62 0.64 0.49 0.38 0.00 0.69 0.12 0.18 9.15 0.88 0.10 
14 0.71 0.66 0.74 0.56 0.38 0.00 0.73 0.13 0.18 9.46 1.43 0.15 
15 0.74 0.68 0.77 0.55 0.39 0.00 0.71 0.14 0.19 9.80 1.45 0.15 
16 0.71 0.68 0.74 0.56 0.41 0.00 0.72 0.13 0.17 12.77 1.50 0.12 
17 0.73 0.74 0.76 0.61 0.50 0.00 0.72 0.13 0.19 12.67 0.94 0.07 
18 0.69 0.66 0.71 0.55 0.39 0.00 0.70 0.12 0.17 11.21 0.81 0.07 
19 0.57 0.60 0.60 0.49 0.38 0.00 0.56 0.17 0.30 11.97 1.60 0.13 
20 0.67 0.66 0.68 0.57 0.43 0.00 0.55 0.17 0.31 11.90 1.30 0.11 
21 0.57 0.58 0.61 0.50 0.39 0.00 0.53 0.19 0.36 10.15 1.00 0.10 
22 0.53 0.51 0.50 0.41 0.33 0.00 0.55 0.13 0.23 12.16 1.35 0.11 
23 0.50 0.51 0.52 0.40 0.29 0.00 0.63 0.11 0.18 11.44 1.96 0.17 
24 0.59 0.58 0.60 0.51 0.37 0.00 0.54 0.17 0.32 11.72 0.87 0.07 
25 0.62 0.63 0.67 0.53 0.38 0.00 0.60 0.16 0.27 9.14 0.92 0.10 
26 0.52 0.54 0.51 0.48 0.43 0.00 0.49 0.14 0.29 13.42 1.01 0.08 
27 0.54 0.52 0.50 0.45 0.35 0.00 0.49 0.12 0.24 12.13 0.65 0.05 
28 0.55 0.51 0.53 0.41 0.30 0.00 0.60 0.13 0.21 9.43 0.69 0.07 
29 0.57 0.58 0.60 0.54 0.41 0.00 0.54 0.16 0.29 12.55 2.09 0.17 
30 0.53 0.56 0.59 0.50 0.41 0.00 0.43 0.24 0.57 6.40 1.24 0.19 
31 0.51 0.53 0.57 0.46 0.35 0.00 0.58 0.14 0.24 11.52 2.17 0.19 
32 0.47 0.48 0.51 0.39 0.30 0.00 0.58 0.13 0.22 12.80 1.71 0.13 
33 0.60 0.64 0.65 0.58 0.46 0.00 0.54 0.17 0.31 13.48 1.38 0.10 
34 0.66 0.65 0.68 0.59 0.47 0.00 0.53 0.17 0.31 11.92 1.96 0.16 
35 0.57 0.54 0.58 0.47 0.34 0.00 0.53 0.16 0.30 10.37 1.26 0.03 
36 0.53 0.48 0.49 0.38 0.31 0.00 0.51 0.12 0.24 11.05 0.96 0.02 
37 0.56 0.56 0.61 0.48 0.34 0.00 0.58 0.16 0.28 10.65 0.95 0.02 
38 0.65 0.66 0.72 0.55 0.39 0.00 0.57 0.21 0.36 9.60 0.97 0.02 
39 0.49 0.52 0.47 0.45 0.41 0.00 0.47 0.16 0.33 13.76 0.84 0.02 
40 0.40 0.44 0.41 0.34 0.25 0.00 0.52 0.13 0.26 8.43 0.63 0.01 
41 0.51 0.48 0.48 0.40 0.32 0.00 0.54 0.13 0.24 11.36 1.54 0.03 
42 0.60 0.58 0.62 0.46 0.34 0.00 0.58 0.16 0.28 12.75 0.81 0.02 
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Appendix XXIII For the plots at the FORBIO site in Gedinne, represented by plot ID, the number of species and the number of trees per species are given. 

Plot ID No. species No. common beech No. pedunculate oak No. silver birch No. small-leaved lime No. Scots pine Total No. trees 
1 4 0 204 196 192 192 784 
2 1 0 0 0 784 0 784 
3 3 259 264 0 0 261 784 
4 2 0 400 0 384 0 784 
5 2 0 0 384 0 400 784 
6 4 199 192 207 0 186 784 
7 3 261 0 264 259 0 784 
8 1 0 784 0 0 0 784 
9 3 0 267 0 256 261 784 

10 2 0 384 400 0 0 784 
11 1 0 0 0 0 784 784 
12 4 201 0 192 193 198 784 
13 1 0 0 784 0 0 784 
14 2 400 0 0 0 384 784 
15 1 784 0 0 0 0 784 
16 4 192 205 0 189 198 784 
17 2 384 0 0 400 0 784 
18 3 259 261 264 0 0 784 
19 3 0 0 258 259 267 784 
20 4 189 189 199 207 0 784 
22 4 198 201 189 196 0 784 
23 4 198 0 201 189 196 784 
24 3 268 258 258 0 0 784 
25 1 784 0 0 0 0 784 
26 2 0 384 0 400 0 784 
27 3 252 265 0 0 267 784 
28 1 0 784 0 0 0 784 
29 4 0 192 195 198 199 784 
30 1 0 0 0 0 700 700 
31 3 0 0 240 223 237 700 
32 3 240 0 244 216 0 700 
33 2 348 0 0 352 0 700 
34 3 0 240 0 235 225 700 
35 4 153 166 189 0 192 700 
36 2 0 348 352 0 0 700 
37 1 0 0 0 700 0 700 
38 1 700 0 0 0 0 700 
39 2 352 0 0 0 348 700 
40 1 0 0 700 0 0 700 
41 4 162 183 0 172 183 700 
42 1 700 0 0 0 0 700 
43 1 784 0 0 0 0 784 
44 1 784 0 0 0 0 784 



 

101 
 

Appendix XXIV For the plots at the FORBIO site in Gedinne, represented by plot ID, the mean and standard deviation (sd) of different reflectance bands are given: blue, green, 
red, red edge (RE), near infrared (NIR) and longwave infrared (LWIR). These values are a result after clipping with the reduced plot sizes, correcting for the alpha band and 
applying the mask layer to eliminate dead or unhealthy vegetation pixels.  

Plot ID Blue Green Red RE NIR LWIR Blue sd Green sd Red sd RE sd NIR sd LWIR sd 
1 1927 2283 489 2868 6765 65535 996 1096 257 1061 2076 0.49 
2 2644 3556 803 4586 9212 65535 764 1201 326 1386 2641 0.49 
3 1844 2411 476 3347 7472 65535 773 1111 209 1330 2455 0.49 
4 1744 2319 475 3190 7049 65535 755 1018 206 1204 2372 0.49 
5 2142 2396 518 2632 6130 65535 1310 1427 325 1260 2328 0.49 
6 1809 2185 441 2676 6957 65535 1010 1164 244 1110 2310 0.49 
7 2131 2458 520 2935 6960 65535 1157 1286 275 1133 2190 0.49 
8 1881 2641 490 3539 7648 65535 712 1072 199 1263 2454 0.49 
9 2137 2727 541 3805 8478 65535 786 1060 219 1241 2385 0.49 

10 1999 3787 820 3814 6840 65535 1286 2284 509 1864 2929 0.49 
11 1486 3071 588 4199 9977 65535 788 1555 326 1911 3209 0.49 
12 1868 3622 733 4126 7930 65535 1092 2031 408 1689 2647 0.49 
13 1767 3603 754 3630 7200 65535 1215 2366 502 1964 3249 0.49 
14 1874 3869 736 5077 10111 65535 803 1697 325 1910 2928 0.49 
15 1611 3462 668 4478 9891 65535 732 1658 323 1847 3216 0.49 
16 1930 4091 800 5270 9397 65535 783 1744 357 1933 3014 0.49 
17 1687 3646 699 4754 10034 65535 808 1758 353 1975 3295 0.49 
18 1337 2688 525 2830 6292 65535 746 1427 290 1163 2253 0.49 
19 1430 2831 528 2896 6555 65535 796 1554 297 1212 2228 0.49 
20 1526 3064 592 3281 6978 65535 737 1503 293 1285 2400 0.49 
22 1653 4109 1821 10950 29910 65535 1205 2868 1383 6363 13031 0.49 
23 1614 4080 1786 10823 30761 65535 1217 2901 1430 6510 13475 0.49 
24 1469 3785 1643 9513 26472 65535 1094 2623 1252 5414 12086 0.49 
25 1755 5064 2066 14649 37981 65535 1251 3601 1552 8835 15804 0.49 
26 1529 4155 1871 12630 29810 65535 1102 2865 1520 7624 14645 0.49 
27 1421 3933 1599 11242 35317 65535 791 2012 911 4991 12301 0.49 
28 1245 3630 1449 10649 30300 65535 654 1771 801 4664 11614 0.49 
29 1466 3745 1588 9334 31022 65535 978 2352 1035 4497 11362 0.49 
30 1712 3774 1659 9790 29334 65535 1524 3047 1605 6511 12549 0.49 
31 1612 3859 1703 8602 23330 65535 1296 3021 1504 5815 11638 0.49 
32 1812 4398 1857 9742 26350 65535 1358 3226 1515 6061 11934 0.49 
33 1692 4013 1844 10726 27761 65535 1325 3071 1632 6934 13213 0.49 
34 1818 4328 1909 11606 29927 65535 1432 3067 1555 6816 12647 0.49 
35 1729 4191 1849 9916 27600 65535 1297 2939 1455 5902 11274 0.49 
36 1707 4096 1842 9056 24434 65535 1261 2859 1474 5412 11558 0.49 
37 1926 4558 2189 12150 28309 65535 1182 2686 1579 6065 11693 0.49 
38 1867 4742 1928 13070 38343 65535 1086 2806 1228 6318 11660 0.49 
39 1744 4136 1737 11137 33570 65535 1209 2608 1288 5790 10886 0.49 
40 2122 5210 2097 10506 28843 65535 1483 3424 1468 5619 11213 0.49 
41 1706 4123 1736 10948 30298 65535 1137 2473 1214 5371 10314 0.49 
42 1757 4519 1808 12081 35071 65535 983 2610 1104 5608 10233 0.49 
43 2112 4494 863 5818 10516 65535 746 1628 363 1857 3161 0.49 
44 1703 3719 690 4721 9916 65535 699 1694 327 1905 3295 0.49 
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Appendix XXV For the plots at the FORBIO site in Gedinne, represented by plot ID, the correlation of variance (cv) of different reflectance bands are given: blue, green, red, red 
edge (RE), near infrared (NIR) and longwave infrared (LWIR). The mean, standard deviation (sd) and cv of the NDVI and the corrected plant height (PH) are presented as well. 
These values are a result after clipping with the reduced plot sizes, correcting for the alpha band and applying the mask layer to eliminate dead or unhealthy vegetation pixels. 

Plot ID Blue cv Green cv Red cv RE cv NIR cv LWIR cv NDVI NDVI sd NDVI cv PH PH sd  PH cv 
1 0.52 0.48 0.53 0.37 0.31 0.00 0.87 0.05 0.06 13.43 3.08 0.23 
2 0.29 0.34 0.41 0.30 0.29 0.00 0.83 0.08 0.09 8.58 0.25 0.03 
3 0.42 0.46 0.44 0.40 0.33 0.00 0.87 0.06 0.07 11.04 1.44 0.13 
4 0.43 0.44 0.43 0.38 0.34 0.00 0.87 0.06 0.07 10.53 1.71 0.16 
5 0.61 0.60 0.63 0.48 0.38 0.00 0.85 0.05 0.06 14.66 2.07 0.14 
6 0.56 0.53 0.55 0.41 0.33 0.00 0.88 0.04 0.05 12.22 2.87 0.23 
7 0.54 0.52 0.53 0.39 0.31 0.00 0.86 0.06 0.06 11.48 2.94 0.26 
8 0.38 0.41 0.41 0.36 0.32 0.00 0.88 0.04 0.05 9.13 1.67 0.18 
9 0.37 0.39 0.41 0.33 0.28 0.00 0.88 0.06 0.06 8.83 1.30 0.15 

10 0.64 0.60 0.62 0.49 0.43 0.00 0.79 0.07 0.08 14.10 1.93 0.14 
11 0.53 0.51 0.55 0.46 0.32 0.00 0.89 0.04 0.05 10.20 1.02 0.10 
12 0.58 0.56 0.56 0.41 0.33 0.00 0.83 0.07 0.08 11.32 2.86 0.25 
13 0.69 0.66 0.67 0.54 0.45 0.00 0.82 0.06 0.07 15.69 0.95 0.06 
14 0.43 0.44 0.44 0.38 0.29 0.00 0.86 0.06 0.07 8.88 1.00 0.11 
15 0.45 0.48 0.48 0.41 0.33 0.00 0.87 0.05 0.06 9.56 1.15 0.12 
16 0.41 0.43 0.45 0.37 0.32 0.00 0.84 0.07 0.09 8.59 1.06 0.12 
17 0.48 0.48 0.51 0.42 0.33 0.00 0.87 0.06 0.07 9.30 1.22 0.13 
18 0.56 0.53 0.55 0.41 0.36 0.00 0.85 0.05 0.06 13.32 2.78 0.21 
19 0.56 0.55 0.56 0.42 0.34 0.00 0.86 0.05 0.06 12.15 3.27 0.27 
20 0.48 0.49 0.49 0.39 0.34 0.00 0.84 0.06 0.08 9.93 2.50 0.25 
22 0.73 0.70 0.76 0.58 0.44 0.00 0.89 0.05 0.06 10.92 1.78 0.16 
23 0.75 0.71 0.80 0.60 0.44 0.00 0.90 0.05 0.06 9.81 1.63 0.17 
24 0.74 0.69 0.76 0.57 0.46 0.00 0.89 0.05 0.06 10.65 1.99 0.19 
25 0.71 0.71 0.75 0.60 0.42 0.00 0.90 0.05 0.06 7.83 1.08 0.14 
26 0.72 0.69 0.81 0.60 0.49 0.00 0.89 0.06 0.07 9.50 1.73 0.18 
27 0.56 0.51 0.57 0.44 0.35 0.00 0.91 0.04 0.04 9.34 1.61 0.17 
28 0.53 0.49 0.55 0.44 0.38 0.00 0.91 0.03 0.03 10.61 1.56 0.15 
29 0.67 0.63 0.65 0.48 0.37 0.00 0.91 0.04 0.04 11.37 2.29 0.20 
30 0.89 0.81 0.97 0.67 0.43 0.00 0.91 0.06 0.07 12.55 1.00 0.08 
31 0.80 0.78 0.88 0.68 0.50 0.00 0.88 0.07 0.08 13.72 2.98 0.22 
32 0.75 0.73 0.82 0.62 0.45 0.00 0.89 0.06 0.07 13.96 2.46 0.18 
33 0.78 0.77 0.89 0.65 0.48 0.00 0.89 0.08 0.09 11.33 1.55 0.14 
34 0.79 0.71 0.81 0.59 0.42 0.00 0.89 0.06 0.06 12.48 1.10 0.09 
35 0.75 0.70 0.79 0.60 0.41 0.00 0.89 0.06 0.07 12.17 4.20 0.35 
36 0.74 0.70 0.80 0.60 0.47 0.00 0.88 0.06 0.07 13.46 1.66 0.12 
37 0.61 0.59 0.72 0.50 0.41 0.00 0.86 0.09 0.11 9.77 1.43 0.15 
38 0.58 0.59 0.64 0.48 0.30 0.00 0.91 0.04 0.04 11.08 0.95 0.09 
39 0.69 0.63 0.74 0.52 0.32 0.00 0.91 0.05 0.05 11.56 1.19 0.10 
40 0.70 0.66 0.70 0.53 0.39 0.00 0.88 0.05 0.06 12.09 2.51 0.21 
41 0.67 0.60 0.70 0.49 0.34 0.00 0.90 0.05 0.05 12.41 1.24 0.10 
42 0.56 0.58 0.61 0.46 0.29 0.00 0.91 0.04 0.04 10.97 0.89 0.08 
43 0.35 0.36 0.42 0.32 0.30 0.00 0.84 0.08 0.10 7.25 0.77 0.11 
44 0.41 0.46 0.47 0.40 0.33 0.00 0.87 0.06 0.07 8.47 1.08 0.13 
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8 Popularised Summary 

Today, biodiversity is declining faster than ever known in human history. This huge 

loss of species threatens all kind of benefits that nature provides us. Think off clean 

drinking water, carbon uptake, recreation… Without taking conservation actions, the 

rate of species extinction will accelerate even more, which is a direct threat to human 

existence. To be able to conserve species, one needs to have a clear picture of how 

many species live where and how well they are performing. However, doing this 

through traditional field surveys is very time-consuming and costly. A recently 

discovered solution for this is using drones. Drones can easily collect very detailed 

data and can even capture information that is not visible to the naked eye. Because 

this is a rather new field of research, much remains to be discovered. 

In this research, we tried to predict species diversity and productivity at the FORBIO 

tree experiment sites in Belgium. At these sites, different tree species are planted in 

plots where some plots contain one species only (monocultures) and in other plots 

different species are mixed together. To collect data, drone flight missions were carried 

out over these sites. A multispectral sensor attached to the drone captured reflectance 

data in different parts of the electromagnetic spectrum e.g. visible part, infrared part… 

For all these bands, the mean, standard deviation and correlation of variance were 

calculated per plot and this information was used to build models to predict tree species 

richness on the one hand and tree productivity on the other hand. Different models 

were tested, but none were very good in predicting species richness. However, by 

adding information of the tree height the model accuracy increased significantly. 

The models to predict tree productivity performed better. Generally, a higher 

productivity was found in mixed-species plots compared to monoculture plots. This 

confirms the theory that it is better to plant mixed forest. These research results 

indicate that data collected with drones can indeed be used in tree biodiversity and 

productivity studies in addition to traditional field surveys.  

 


